An integrated dynamic model of natural gas pipeline networks is developed in this paper.Components for gas supply,e.g.,pipelines,junctions,compressor stations,LNG terminals,regulation stations and gas storage faciliti...An integrated dynamic model of natural gas pipeline networks is developed in this paper.Components for gas supply,e.g.,pipelines,junctions,compressor stations,LNG terminals,regulation stations and gas storage facilities are included in the model.These components are firstly modeled with respect to their properties and functions and,then,integrated at the system level by Graph Theory.The model can be used for simulating the system response in different scenarios of operation,and evaluate the consequences from the perspectives of supply security and resilience.A case study is considered to evaluate the accuracy of the model by benchmarking its results against those from literature and the software Pipeline Studio.Finally,the model is applied on a relatively complex natural gas pipeline network and the results are analyzed in detail from the supply security and resilience points of view.The main contributions of the paper are:firstly,a novel model of a complex gas pipeline network is proposed as a dynamic state-space model at system level;a method,based on the dynamic model,is proposed to analyze the security and resilience of supply from a system perspective.展开更多
In short-term operation of natural gas network,the impact of demand uncertainty is not negligible.To address this issue we propose a two-stage robust model for power cost minimization problem in gunbarrel natural gas ...In short-term operation of natural gas network,the impact of demand uncertainty is not negligible.To address this issue we propose a two-stage robust model for power cost minimization problem in gunbarrel natural gas networks.The demands between pipelines and compressor stations are uncertain with a budget parameter,since it is unlikely that all the uncertain demands reach the maximal deviation simultaneously.During solving the two-stage robust model we encounter a bilevel problem which is challenging to solve.We formulate it as a multi-dimensional dynamic programming problem and propose approximate dynamic programming methods to accelerate the calculation.Numerical results based on real network in China show that we obtain a speed gain of 7 times faster in average without compromising optimality compared with original dynamic programming algorithm.Numerical results also verify the advantage of robust model compared with deterministic model when facing uncertainties.These findings offer short-term operation methods for gunbarrel natural gas network management to handle with uncertainties.展开更多
By the end of 2015, total length of China's long-distance gas pipelines has exceeded 70,O00km. Onshore stratey, ic import paths have been formed, domestic trunk networks perfected and gas storages construction pace a...By the end of 2015, total length of China's long-distance gas pipelines has exceeded 70,O00km. Onshore stratey, ic import paths have been formed, domestic trunk networks perfected and gas storages construction pace acceh'rated. The Chinese section of Russia-China East Gas Pipeline was officially commenced, which marked that the northeast import path entered the stage ofconstruction. There are 13 LNG terminals in China. The National Development and Rerorm Commission (NDRC) approved China's.first private-owned LNG terminal- the Zhoushan LNG terminal. In the coming.five years, the focus of institutional reform will be the independence of pipelines and networks, the focus of construction will be regional networks and branch pipelines, and joint ventures will be the mainstream for gas pipeline construction and operation.展开更多
Underground natural gas storage(UNGS)is an important part of the natural gas supply system to ensure a balanced energy supply.The surface system,as an important part of the gas storage,undertakes the functions of gas ...Underground natural gas storage(UNGS)is an important part of the natural gas supply system to ensure a balanced energy supply.The surface system,as an important part of the gas storage,undertakes the functions of gas injection and gas production of the gas storage,and its investment economy is of vital importance.In fact,the UNGS surface pipeline network has two-way injection and production characteristics,which is different from the one-way production characteristics of conventional oil&gas gathering and transportation systems.This paper takes the minimum investment of the pipeline network as the objective function,considers the gas injection and gas withdrawal flow conditions and esablishes a mixed integer non-linear programming model(MINLP)for the surface pipeline network of the UNGS to optimize its pipeline layout and diameter parameters.Constraints including the well affiliation,the number of stations,the gathering radius,the processing capacity and the flow/pressure equilibrium equations,are also taken into consideration.Taking an UNGS in China as an example,the results of the optimal structure and diameter of the pipeline network,as well as the pipe flow,node pressure,and maximum/minimum flowrate during gas injection and gas withdrawal are obtained.Finally,the effects of constraints such as processing capacity and radius on the structure layout and investment of the UNGS are analyzed,verifying the reliability and effectiveness of the model.展开更多
基金supported by National Natural Science Foundation of China[grant number 51904316]provided by China University of Petroleum,Beijing[grant number2462021YJRC013,2462020YXZZ045]
文摘An integrated dynamic model of natural gas pipeline networks is developed in this paper.Components for gas supply,e.g.,pipelines,junctions,compressor stations,LNG terminals,regulation stations and gas storage facilities are included in the model.These components are firstly modeled with respect to their properties and functions and,then,integrated at the system level by Graph Theory.The model can be used for simulating the system response in different scenarios of operation,and evaluate the consequences from the perspectives of supply security and resilience.A case study is considered to evaluate the accuracy of the model by benchmarking its results against those from literature and the software Pipeline Studio.Finally,the model is applied on a relatively complex natural gas pipeline network and the results are analyzed in detail from the supply security and resilience points of view.The main contributions of the paper are:firstly,a novel model of a complex gas pipeline network is proposed as a dynamic state-space model at system level;a method,based on the dynamic model,is proposed to analyze the security and resilience of supply from a system perspective.
基金partially supported by the National Science Foundation of China(Grants 71822105 and 91746210)。
文摘In short-term operation of natural gas network,the impact of demand uncertainty is not negligible.To address this issue we propose a two-stage robust model for power cost minimization problem in gunbarrel natural gas networks.The demands between pipelines and compressor stations are uncertain with a budget parameter,since it is unlikely that all the uncertain demands reach the maximal deviation simultaneously.During solving the two-stage robust model we encounter a bilevel problem which is challenging to solve.We formulate it as a multi-dimensional dynamic programming problem and propose approximate dynamic programming methods to accelerate the calculation.Numerical results based on real network in China show that we obtain a speed gain of 7 times faster in average without compromising optimality compared with original dynamic programming algorithm.Numerical results also verify the advantage of robust model compared with deterministic model when facing uncertainties.These findings offer short-term operation methods for gunbarrel natural gas network management to handle with uncertainties.
文摘By the end of 2015, total length of China's long-distance gas pipelines has exceeded 70,O00km. Onshore stratey, ic import paths have been formed, domestic trunk networks perfected and gas storages construction pace acceh'rated. The Chinese section of Russia-China East Gas Pipeline was officially commenced, which marked that the northeast import path entered the stage ofconstruction. There are 13 LNG terminals in China. The National Development and Rerorm Commission (NDRC) approved China's.first private-owned LNG terminal- the Zhoushan LNG terminal. In the coming.five years, the focus of institutional reform will be the independence of pipelines and networks, the focus of construction will be regional networks and branch pipelines, and joint ventures will be the mainstream for gas pipeline construction and operation.
基金This work was part of the program“Study on the optimization method and architecture of oil and gas pipeline network design in discrete space and network space”,funded by the National Natural Science Foundation of China,grant number 51704253.The authors are grateful to all study participants.
文摘Underground natural gas storage(UNGS)is an important part of the natural gas supply system to ensure a balanced energy supply.The surface system,as an important part of the gas storage,undertakes the functions of gas injection and gas production of the gas storage,and its investment economy is of vital importance.In fact,the UNGS surface pipeline network has two-way injection and production characteristics,which is different from the one-way production characteristics of conventional oil&gas gathering and transportation systems.This paper takes the minimum investment of the pipeline network as the objective function,considers the gas injection and gas withdrawal flow conditions and esablishes a mixed integer non-linear programming model(MINLP)for the surface pipeline network of the UNGS to optimize its pipeline layout and diameter parameters.Constraints including the well affiliation,the number of stations,the gathering radius,the processing capacity and the flow/pressure equilibrium equations,are also taken into consideration.Taking an UNGS in China as an example,the results of the optimal structure and diameter of the pipeline network,as well as the pipe flow,node pressure,and maximum/minimum flowrate during gas injection and gas withdrawal are obtained.Finally,the effects of constraints such as processing capacity and radius on the structure layout and investment of the UNGS are analyzed,verifying the reliability and effectiveness of the model.