A good hybrid vehicle control strategy cannot only meet the power requirements of the vehicle,but also effectively save fuel and reduce emissions.In this paper,the construction of model predictive control in hybrid el...A good hybrid vehicle control strategy cannot only meet the power requirements of the vehicle,but also effectively save fuel and reduce emissions.In this paper,the construction of model predictive control in hybrid electric vehicle is proposed.The solving process and the use of reference trajectory are discussed for the application of MPC based on dynamic programming algorithm.The simulation of hybrid electric vehicle is carried out under a specific working condition.The simulation results show that the control strategy can effectively reduce fuel consumption when the torque of engine and motor is reasonably distributed,and the effectiveness of the control strategy is verified.展开更多
The hydro unit economic load dispatch (ELD) is of great importance in energy conservation and emission reduction. Dynamic programming (DP) and genetic algorithm (GA) are two representative algorithms for solving...The hydro unit economic load dispatch (ELD) is of great importance in energy conservation and emission reduction. Dynamic programming (DP) and genetic algorithm (GA) are two representative algorithms for solving ELD problems. The goal of this study was to examine the performance of DP and GA while they were applied to ELD. We established numerical experiments to conduct performance comparisons between DP and GA with two given schemes. The schemes included comparing the CPU time of the algorithms when they had the same solution quality, and comparing the solution quality when they had the same CPU time. The numerical experiments were applied to the Three Gorges Reservoir in China, which is equipped with 26 hydro generation units. We found the relation between the performance of algorithms and the number of units through experiments. Results show that GA is adept at searching for optimal solutions in low-dimensional cases. In some cases, such as with a number of units of less than 10, GA's performance is superior to that of a coarse-grid DP. However, GA loses its superiority in high-dimensional cases. DP is powerful in obtaining stable and high-quality solutions. Its performance can be maintained even while searching over a large solution space. Nevertheless, due to its exhaustive enumerating nature, it costs excess time in low-dimensional cases.展开更多
The investment decision making of Project Gang, the projects that are associated with one another on economy and technique, is studied. In order to find out the best Scheme that can make the maximum profit, a dynami...The investment decision making of Project Gang, the projects that are associated with one another on economy and technique, is studied. In order to find out the best Scheme that can make the maximum profit, a dynamic programming algorithm on the investment decision making of Project Gang is brought forward, and this algorithm can find out the best Scheme of distributing the m resources to the n Items in the time of O(m 2 n).展开更多
We deal with the problem of sharing vehicles by individuals with similar itineraries which is to find the minimum number of drivers, each of which has a vehicle capacity and a detour to realize all trips. Recently, Gu...We deal with the problem of sharing vehicles by individuals with similar itineraries which is to find the minimum number of drivers, each of which has a vehicle capacity and a detour to realize all trips. Recently, Gu et al. showed that the problem is NP-hard even for star graphs restricted with unique destination, and gave a polynomial-time algorithm to solve the problem for paths restricted with unique destination and zero detour. In this paper we will give a dynamic programming algorithm to solve the problem in polynomial time for trees restricted with unique destination and zero detour. In our best knowledge it is a first polynomial-time algorithm for trees.展开更多
A new deterministic formulation,called the conditional expectation formulation,is proposed for dynamic stochastic programming problems in order to overcome some disadvantages of existing deterministic formulations.We ...A new deterministic formulation,called the conditional expectation formulation,is proposed for dynamic stochastic programming problems in order to overcome some disadvantages of existing deterministic formulations.We then check the impact of the new deterministic formulation and other two deterministic formulations on the corresponding problem size,nonzero elements and solution time by solving some typical dynamic stochastic programming problems with different interior point algorithms.Numerical results show the advantage and application of the new deterministic formulation.展开更多
The mathematical and statistical modeling of the problem of poverty is a major challenge given Burundi’s economic development. Innovative economic optimization systems are widely needed to face the problem of the dyn...The mathematical and statistical modeling of the problem of poverty is a major challenge given Burundi’s economic development. Innovative economic optimization systems are widely needed to face the problem of the dynamic of the poverty in Burundi. The Burundian economy shows an inflation rate of -1.5% in 2018 for the Gross Domestic Product growth real rate of 2.8% in 2016. In this research, the aim is to find a model that contributes to solving the problem of poverty in Burundi. The results of this research fill the knowledge gap in the modeling and optimization of the Burundian economic system. The aim of this model is to solve an optimization problem combining the variables of production, consumption, budget, human resources and available raw materials. Scientific modeling and optimal solving of the poverty problem show the tools for measuring poverty rate and determining various countries’ poverty levels when considering advanced knowledge. In addition, investigating the aspects of poverty will properly orient development aid to developing countries and thus, achieve their objectives of growth and the fight against poverty. This paper provides a new and innovative framework for global scientific research regarding the multiple facets of this problem. An estimate of the poverty rate allows good progress with the theory and optimization methods in measuring the poverty rate and achieving sustainable development goals. By comparing the annual food production and the required annual consumption, there is an imbalance between different types of food. Proteins, minerals and vitamins produced in Burundi are sufficient when considering their consumption as required by the entire Burundian population. This positive contribution for the latter comes from the fact that some cows, goats, fishes, ···, slaughtered in Burundi come from neighboring countries. Real production remains in deficit. The lipids, acids, calcium, fibers and carbohydrates produced in Burundi are insufficient for consumption. This negative contribution proves a Burundian food deficit. It is a decision-making indicator for the design and updating of agricultural policy and implementation programs as well as projects. Investment and economic growth are only possible when food security is mastered. The capital allocated to food investment must be revised upwards. Demographic control is also a relevant indicator to push forward Burundi among the emerging countries in 2040. Meanwhile, better understanding of the determinants of poverty by taking cultural and organizational aspects into account guides managers for poverty reduction projects and programs.展开更多
A properly designed public transport system is expected to improve traffic efficiency.A high-frequency bus service would decrease the waiting time for passengers,but the interaction between buses and cars might result...A properly designed public transport system is expected to improve traffic efficiency.A high-frequency bus service would decrease the waiting time for passengers,but the interaction between buses and cars might result in more serious congestion.On the other hand,a low-frequency bus service would increase the waiting time for passengers and would not reduce the use of private cars.It is important to strike a balance between high and low frequencies in order to minimize the total delays for all road users.It is critical to formulate the impacts of bus frequency on congestion dynamics and mode choices.However,as far as the authors know,most proposed bus frequency optimization formulations are based on static demand and the Bureau of Public Roads function,and do not properly consider the congestion dynamics and their impacts on mode choices.To fill this gap,this paper proposes a bi-level optimization model.A three-dimensional Macroscopic Fundamental Diagram based modeling approach is developed to capture the bi-modal congestion dynamics.A variational inequality model for the user equilibrium in mode choices is presented and solved using a double projection algorithm.A surrogate model-based algorithm is used to solve the bi-level programming problem.展开更多
The optimization of the control strategy of a plug-in hybrid electric bus(PHEB) for the repeatedly driven bus route is a key technique to improve the fuel economy. The widely used rule-based(RB) control strategy is la...The optimization of the control strategy of a plug-in hybrid electric bus(PHEB) for the repeatedly driven bus route is a key technique to improve the fuel economy. The widely used rule-based(RB) control strategy is lacking in the global optimization property, while the global optimization algorithms have an unacceptable computation complexity for real-time application. Therefore, a novel hybrid dynamic programming-rule based(DPRB) algorithm is brought forward to solve the global energy optimization problem in a real-time controller of PHEB. Firstly, a control grid is built up for a given typical city bus route, according to the station locations and discrete levels of battery state of charge(SOC). Moreover, the decision variables for the energy optimization at each point of the control grid might be deduced from an off-line dynamic programming(DP) with the historical running information of the driving cycle. Meanwhile, the genetic algorithm(GA) is adopted to replace the quantization process of DP permissible control set to reduce the computation burden. Secondly, with the optimized decision variables as control parameters according to the position and battery SOC of a PHEB, a RB control is used as an implementable controller for the energy management. Simulation results demonstrate that the proposed DPRB might distribute electric energy more reasonably throughout the bus route, compared with the optimized RB. The proposed hybrid algorithm might give a practicable solution, which is a tradeoff between the applicability of RB and the global optimization property of DP.展开更多
Single gimbal control moment gyroscope(SGCMG)with high precision and fast response is an important attitude control system for high precision docking,rapid maneuvering navigation and guidance system in the aerospace f...Single gimbal control moment gyroscope(SGCMG)with high precision and fast response is an important attitude control system for high precision docking,rapid maneuvering navigation and guidance system in the aerospace field.In this paper,considering the influence of multi-source disturbance,a data-based feedback relearning(FR)algorithm is designed for the robust control of SGCMG gimbal servo system.Based on adaptive dynamic programming and least-square principle,the FR algorithm is used to obtain the servo control strategy by collecting the online operation data of SGCMG system.This is a model-free learning strategy in which no prior knowledge of the SGCMG model is required.Then,combining the reinforcement learning mechanism,the servo control strategy is interacted with system dynamic of SGCMG.The adaptive evaluation and improvement of servo control strategy against the multi-source disturbance are realized.Meanwhile,a data redistribution method based on experience replay is designed to reduce data correlation to improve algorithm stability and data utilization efficiency.Finally,by comparing with other methods on the simulation model of SGCMG,the effectiveness of the proposed servo control strategy is verified.展开更多
Under study is the problem of optimum allocation of a resource. The following is proposed: the algorithm of dynamic programming in which on each step we only use the set of Pareto-optimal points, from which unpromisin...Under study is the problem of optimum allocation of a resource. The following is proposed: the algorithm of dynamic programming in which on each step we only use the set of Pareto-optimal points, from which unpromising points are in addition excluded. For this purpose, initial approximations and bilateral prognostic evaluations of optimum are used. These evaluations are obtained by the method of branch and bound. A new algorithm “descent-ascent” is proposed to find upper and lower limits of the optimum. It repeatedly allows to increase the efficiency of the algorithm in the comparison with the well known methods. The results of calculations are included.展开更多
In this paper we consider a parallel algorithm that detects the maximizer of unimodal function f(x) computable at every point on unbounded interval (0, ∞). The algorithm consists of two modes: scanning and detecting....In this paper we consider a parallel algorithm that detects the maximizer of unimodal function f(x) computable at every point on unbounded interval (0, ∞). The algorithm consists of two modes: scanning and detecting. Search diagrams are introduced as a way to describe parallel searching algorithms on unbounded intervals. Dynamic programming equations, combined with a series of liner programming problems, describe relations between results for every pair of successive evaluations of function f in parallel. Properties of optimal search strategies are derived from these equations. The worst-case complexity analysis shows that, if the maximizer is located on a priori unknown interval (n-1], then it can be detected after cp(n)=「2log「p/2」+1(n+1)」-1 parallel evaluations of f(x), where p is the number of processors.展开更多
Traffic congestion is one of the main challenges in transportation engineering. It directly impactsthe economy by increasing travel time and affecting the environment by excessive fuel consumptionand emission. Road ro...Traffic congestion is one of the main challenges in transportation engineering. It directly impactsthe economy by increasing travel time and affecting the environment by excessive fuel consumptionand emission. Road route recommendation to overcome the congestion by alternativeroute suggestions has gained high importance. The existing route recommendation systems areproposed using the reinforcement learning algorithm (Q-learning). The techniques suggestedin this paper are state-action-reward-state-action (SARSA) algorithm and dynamic programming(DP) to guide the commuters to reach the destination with an optimal solution. The algorithmconsiders travel time, cost, flexibility, and traffic intensity as the user preference attributes torecommend an optimal route. The recommended system is implemented by building a roadnetwork graph. We assign values to each user preference attribute along the edges, which cantake high(1) or low(0) values. By considering these values, the system recommends the route.The proposed system performance is evaluated based on computation time, cumulative reward,and accuracy. The results show that DP outperforms the SARSA algorithm.展开更多
基金This work was supported by the youth backbone teachers training program of Henan colleges and universities under Grant No.2016ggjs-287the project of science and technology of Henan province under Grant Nos.172102210124,202102210269the Key Scientific Research projects in Colleges and Universities in Henan(Grant No.18B460003).
文摘A good hybrid vehicle control strategy cannot only meet the power requirements of the vehicle,but also effectively save fuel and reduce emissions.In this paper,the construction of model predictive control in hybrid electric vehicle is proposed.The solving process and the use of reference trajectory are discussed for the application of MPC based on dynamic programming algorithm.The simulation of hybrid electric vehicle is carried out under a specific working condition.The simulation results show that the control strategy can effectively reduce fuel consumption when the torque of engine and motor is reasonably distributed,and the effectiveness of the control strategy is verified.
基金supported by the National Basic Research Program of China(973 Program,Grant No.2013CB036406)the National Natural Science Foundation of China(Grant No.51179044)the Research Innovation Program for College Graduates in Jiangsu Province of China(Grant No.CXZZ12-0242)
文摘The hydro unit economic load dispatch (ELD) is of great importance in energy conservation and emission reduction. Dynamic programming (DP) and genetic algorithm (GA) are two representative algorithms for solving ELD problems. The goal of this study was to examine the performance of DP and GA while they were applied to ELD. We established numerical experiments to conduct performance comparisons between DP and GA with two given schemes. The schemes included comparing the CPU time of the algorithms when they had the same solution quality, and comparing the solution quality when they had the same CPU time. The numerical experiments were applied to the Three Gorges Reservoir in China, which is equipped with 26 hydro generation units. We found the relation between the performance of algorithms and the number of units through experiments. Results show that GA is adept at searching for optimal solutions in low-dimensional cases. In some cases, such as with a number of units of less than 10, GA's performance is superior to that of a coarse-grid DP. However, GA loses its superiority in high-dimensional cases. DP is powerful in obtaining stable and high-quality solutions. Its performance can be maintained even while searching over a large solution space. Nevertheless, due to its exhaustive enumerating nature, it costs excess time in low-dimensional cases.
文摘The investment decision making of Project Gang, the projects that are associated with one another on economy and technique, is studied. In order to find out the best Scheme that can make the maximum profit, a dynamic programming algorithm on the investment decision making of Project Gang is brought forward, and this algorithm can find out the best Scheme of distributing the m resources to the n Items in the time of O(m 2 n).
文摘We deal with the problem of sharing vehicles by individuals with similar itineraries which is to find the minimum number of drivers, each of which has a vehicle capacity and a detour to realize all trips. Recently, Gu et al. showed that the problem is NP-hard even for star graphs restricted with unique destination, and gave a polynomial-time algorithm to solve the problem for paths restricted with unique destination and zero detour. In this paper we will give a dynamic programming algorithm to solve the problem in polynomial time for trees restricted with unique destination and zero detour. In our best knowledge it is a first polynomial-time algorithm for trees.
基金This research was partially supported by the Natural Science Research Foundation of Shaanxi Province(2001SL09)
文摘A new deterministic formulation,called the conditional expectation formulation,is proposed for dynamic stochastic programming problems in order to overcome some disadvantages of existing deterministic formulations.We then check the impact of the new deterministic formulation and other two deterministic formulations on the corresponding problem size,nonzero elements and solution time by solving some typical dynamic stochastic programming problems with different interior point algorithms.Numerical results show the advantage and application of the new deterministic formulation.
文摘The mathematical and statistical modeling of the problem of poverty is a major challenge given Burundi’s economic development. Innovative economic optimization systems are widely needed to face the problem of the dynamic of the poverty in Burundi. The Burundian economy shows an inflation rate of -1.5% in 2018 for the Gross Domestic Product growth real rate of 2.8% in 2016. In this research, the aim is to find a model that contributes to solving the problem of poverty in Burundi. The results of this research fill the knowledge gap in the modeling and optimization of the Burundian economic system. The aim of this model is to solve an optimization problem combining the variables of production, consumption, budget, human resources and available raw materials. Scientific modeling and optimal solving of the poverty problem show the tools for measuring poverty rate and determining various countries’ poverty levels when considering advanced knowledge. In addition, investigating the aspects of poverty will properly orient development aid to developing countries and thus, achieve their objectives of growth and the fight against poverty. This paper provides a new and innovative framework for global scientific research regarding the multiple facets of this problem. An estimate of the poverty rate allows good progress with the theory and optimization methods in measuring the poverty rate and achieving sustainable development goals. By comparing the annual food production and the required annual consumption, there is an imbalance between different types of food. Proteins, minerals and vitamins produced in Burundi are sufficient when considering their consumption as required by the entire Burundian population. This positive contribution for the latter comes from the fact that some cows, goats, fishes, ···, slaughtered in Burundi come from neighboring countries. Real production remains in deficit. The lipids, acids, calcium, fibers and carbohydrates produced in Burundi are insufficient for consumption. This negative contribution proves a Burundian food deficit. It is a decision-making indicator for the design and updating of agricultural policy and implementation programs as well as projects. Investment and economic growth are only possible when food security is mastered. The capital allocated to food investment must be revised upwards. Demographic control is also a relevant indicator to push forward Burundi among the emerging countries in 2040. Meanwhile, better understanding of the determinants of poverty by taking cultural and organizational aspects into account guides managers for poverty reduction projects and programs.
基金supported by the National Natural Science Foundation of China(Grant No.72201088,71871077,71925001)the Fundamental Research Funds for the Central Universities of China(Grant No.PA2022GDSK0040,JZ2023YQTD0073),which are gratefully acknowledged.
文摘A properly designed public transport system is expected to improve traffic efficiency.A high-frequency bus service would decrease the waiting time for passengers,but the interaction between buses and cars might result in more serious congestion.On the other hand,a low-frequency bus service would increase the waiting time for passengers and would not reduce the use of private cars.It is important to strike a balance between high and low frequencies in order to minimize the total delays for all road users.It is critical to formulate the impacts of bus frequency on congestion dynamics and mode choices.However,as far as the authors know,most proposed bus frequency optimization formulations are based on static demand and the Bureau of Public Roads function,and do not properly consider the congestion dynamics and their impacts on mode choices.To fill this gap,this paper proposes a bi-level optimization model.A three-dimensional Macroscopic Fundamental Diagram based modeling approach is developed to capture the bi-modal congestion dynamics.A variational inequality model for the user equilibrium in mode choices is presented and solved using a double projection algorithm.A surrogate model-based algorithm is used to solve the bi-level programming problem.
基金supported by the National Natural Science Foundation of China(Grant No.51275557,5142505)the National Science-Technology Support Plan Projects of China(Grant No.2013BAG14B01)
文摘The optimization of the control strategy of a plug-in hybrid electric bus(PHEB) for the repeatedly driven bus route is a key technique to improve the fuel economy. The widely used rule-based(RB) control strategy is lacking in the global optimization property, while the global optimization algorithms have an unacceptable computation complexity for real-time application. Therefore, a novel hybrid dynamic programming-rule based(DPRB) algorithm is brought forward to solve the global energy optimization problem in a real-time controller of PHEB. Firstly, a control grid is built up for a given typical city bus route, according to the station locations and discrete levels of battery state of charge(SOC). Moreover, the decision variables for the energy optimization at each point of the control grid might be deduced from an off-line dynamic programming(DP) with the historical running information of the driving cycle. Meanwhile, the genetic algorithm(GA) is adopted to replace the quantization process of DP permissible control set to reduce the computation burden. Secondly, with the optimized decision variables as control parameters according to the position and battery SOC of a PHEB, a RB control is used as an implementable controller for the energy management. Simulation results demonstrate that the proposed DPRB might distribute electric energy more reasonably throughout the bus route, compared with the optimized RB. The proposed hybrid algorithm might give a practicable solution, which is a tradeoff between the applicability of RB and the global optimization property of DP.
基金This work was supported by the National Natural Science Foundation of China(No.62022061)Tianjin Natural Science Foundation(No.20JCYBJC00880)Beijing Key Laboratory Open Fund of Long-Life Technology of Precise Rotation and Transmission Mechanisms.
文摘Single gimbal control moment gyroscope(SGCMG)with high precision and fast response is an important attitude control system for high precision docking,rapid maneuvering navigation and guidance system in the aerospace field.In this paper,considering the influence of multi-source disturbance,a data-based feedback relearning(FR)algorithm is designed for the robust control of SGCMG gimbal servo system.Based on adaptive dynamic programming and least-square principle,the FR algorithm is used to obtain the servo control strategy by collecting the online operation data of SGCMG system.This is a model-free learning strategy in which no prior knowledge of the SGCMG model is required.Then,combining the reinforcement learning mechanism,the servo control strategy is interacted with system dynamic of SGCMG.The adaptive evaluation and improvement of servo control strategy against the multi-source disturbance are realized.Meanwhile,a data redistribution method based on experience replay is designed to reduce data correlation to improve algorithm stability and data utilization efficiency.Finally,by comparing with other methods on the simulation model of SGCMG,the effectiveness of the proposed servo control strategy is verified.
基金Supported by National Natural Science Foundation of China (61304079, 61125306, 61034002), the Open Research Project from SKLMCCS (20120106), the Fundamental Research Funds for the Central Universities (FRF-TP-13-018A), and the China Postdoctoral Science. Foundation (201_3M_ 5305_27)_ _ _
文摘为有致动器浸透和未知动力学的分离时间的系统的一个班的一个新奇最佳的追踪控制方法在这份报纸被建议。计划基于反复的适应动态编程(自动数据处理) 算法。以便实现控制计划,一个 data-based 标识符首先为未知系统动力学被构造。由介绍 M 网络,稳定的控制的明确的公式被完成。以便消除致动器浸透的效果, nonquadratic 表演功能被介绍,然后一个反复的自动数据处理算法被建立与集中分析完成最佳的追踪控制解决方案。为实现最佳的控制方法,神经网络被用来建立 data-based 标识符,计算性能索引功能,近似最佳的控制政策并且分别地解决稳定的控制。模拟例子被提供验证介绍最佳的追踪的控制计划的有效性。
文摘Under study is the problem of optimum allocation of a resource. The following is proposed: the algorithm of dynamic programming in which on each step we only use the set of Pareto-optimal points, from which unpromising points are in addition excluded. For this purpose, initial approximations and bilateral prognostic evaluations of optimum are used. These evaluations are obtained by the method of branch and bound. A new algorithm “descent-ascent” is proposed to find upper and lower limits of the optimum. It repeatedly allows to increase the efficiency of the algorithm in the comparison with the well known methods. The results of calculations are included.
文摘In this paper we consider a parallel algorithm that detects the maximizer of unimodal function f(x) computable at every point on unbounded interval (0, ∞). The algorithm consists of two modes: scanning and detecting. Search diagrams are introduced as a way to describe parallel searching algorithms on unbounded intervals. Dynamic programming equations, combined with a series of liner programming problems, describe relations between results for every pair of successive evaluations of function f in parallel. Properties of optimal search strategies are derived from these equations. The worst-case complexity analysis shows that, if the maximizer is located on a priori unknown interval (n-1], then it can be detected after cp(n)=「2log「p/2」+1(n+1)」-1 parallel evaluations of f(x), where p is the number of processors.
文摘Traffic congestion is one of the main challenges in transportation engineering. It directly impactsthe economy by increasing travel time and affecting the environment by excessive fuel consumptionand emission. Road route recommendation to overcome the congestion by alternativeroute suggestions has gained high importance. The existing route recommendation systems areproposed using the reinforcement learning algorithm (Q-learning). The techniques suggestedin this paper are state-action-reward-state-action (SARSA) algorithm and dynamic programming(DP) to guide the commuters to reach the destination with an optimal solution. The algorithmconsiders travel time, cost, flexibility, and traffic intensity as the user preference attributes torecommend an optimal route. The recommended system is implemented by building a roadnetwork graph. We assign values to each user preference attribute along the edges, which cantake high(1) or low(0) values. By considering these values, the system recommends the route.The proposed system performance is evaluated based on computation time, cumulative reward,and accuracy. The results show that DP outperforms the SARSA algorithm.