期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Non-Stationary Random Process for Large-Scale Failure and Recovery of Power Distribution
1
作者 Yun Wei Chuanyi Ji +3 位作者 Floyd Galvan Stephen Couvillon George Orellana James Momoh 《Applied Mathematics》 2016年第3期233-249,共17页
This work applies non-stationary random processes to resilience of power distribution under severe weather. Power distribution, the edge of the energy infrastructure, is susceptible to external hazards from severe wea... This work applies non-stationary random processes to resilience of power distribution under severe weather. Power distribution, the edge of the energy infrastructure, is susceptible to external hazards from severe weather. Large-scale power failures often occur, resulting in millions of people without electricity for days. However, the problem of large-scale power failure, recovery and resilience has not been formulated rigorously nor studied systematically. This work studies the resilience of power distribution from three aspects. First, we derive non-stationary random processes to model large-scale failures and recoveries. Transient Little’s Law then provides a simple approximation of the entire life cycle of failure and recovery through a queue at the network-level. Second, we define time-varying resilience based on the non-stationary model. The resilience metric characterizes the ability of power distribution to remain operational and recover rapidly upon failures. Third, we apply the non-stationary model and the resilience metric to large-scale power failures caused by Hurricane Ike. We use the real data from the electric grid to learn time-varying model parameters and the resilience metric. Our results show non-stationary evolution of failure rates and recovery times, and how the network resilience deviates from that of normal operation during the hurricane. 展开更多
关键词 RESILIENCE Non-Stationary Random Process Power Distribution dynamic queue Transient Little’s Law Real Data
下载PDF
Information Entropy Based Prioritization Strategy for Data-driven Transient Stability Batch Assessment 被引量:1
2
作者 Rong Yan Zhaoyu Wang +2 位作者 Yuxuan Yuan Guangchao Geng Quanyuan Jiang 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第3期443-455,共13页
Transient stability batch assessment(TSBA)is es-sential for dynamic security check in both power system planning and day-ahead dispatch.It is also a necessary technique to generate sufficient training data for data-dr... Transient stability batch assessment(TSBA)is es-sential for dynamic security check in both power system planning and day-ahead dispatch.It is also a necessary technique to generate sufficient training data for data-driven online transient stability assessment(TSA).However,most existing work suffers from various problems including high computational burden,low model adaptability,and low performance robustness.Therefore,it is still a significant challenge in modern power systems,with numerous scenarios(e.g.,operating conditions and"N-k"contin-gencies)to be assessed at the same time.The purpose of this work is to construct a data-driven method to early terminate time-domain simulation(TDS)and dynamically schedule TSBA task queue a prior,in order to reduce computational burden without compromising accuracy.To achieve this goal,a time-adaptive cas-caded convolutional neural networks(CNNs)model is developed to predict stability and early terminate TDS.Additionally,an information entropy based prioritization strategy is designed to distinguish informative samples,dynamically schedule TSBA task queue and timely update model,thus further reducing simulation time.Case study in IEEE 39-bus system validates the effectiveness of the proposed method. 展开更多
关键词 Cascaded convolutional neural networks(CNNs) dynamic task queue information entropy based prioritization strategy time-domain simulation(TDS) transient stability batch assessment(TSBA)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部