期刊文献+
共找到278篇文章
< 1 2 14 >
每页显示 20 50 100
Effect of deformation parameters on the austenite dynamic recrystallization behavior of a eutectoid pearlite rail steel
1
作者 Haibo Feng Shaohua Li +7 位作者 Kexiao Wang Junheng Gao Shuize Wang Haitao Zhao Zhenyu Han Yong Deng Yuhe Huang Xinping Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期833-841,共9页
Understandings of the effect of hot deformation parameters close to the practical production line on grain refinement are crucial for enhancing both the strength and toughness of future rail steels.In this work,the au... Understandings of the effect of hot deformation parameters close to the practical production line on grain refinement are crucial for enhancing both the strength and toughness of future rail steels.In this work,the austenite dynamic recrystallization(DRX)behaviors of a eutectoid pearlite rail steel were studied using a thermo-mechanical simulator with hot deformation parameters frequently employed in rail production lines.The single-pass hot deformation results reveal that the prior austenite grain sizes(PAGSs)for samples with different deformation reductions decrease initially with an increase in deformation temperature.However,once the deformation temperature is beyond a certain threshold,the PAGSs start to increase.It can be attributed to the rise in DRX volume fraction and the increase of DRX grain with deformation temperature,respectively.Three-pass hot deformation results show that the accumulated strain generated in the first and second deformation passes can increase the extent of DRX.In the case of complete DRX,PAGS is predominantly determined by the deformation temperature of the final pass.It suggests a strategic approach during industrial production where part of the deformation reduction in low temperature range can be shifted to the medium temperature range to release rolling mill loads. 展开更多
关键词 eutectoid pearlite rail steel prior austenite grain size dynamic recrystallization single-pass hot deformation three-pass hot deformation
下载PDF
Simulation of Dynamic Recrystallization in 7075 Aluminum Alloy Using Cellular Automaton
2
作者 赵晓东 SHI Dongxing +3 位作者 李亚杰 QIN Fengming CHU Zhibing YANG Xiaorong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期425-435,共11页
The evolution of microstructure during hot deformation is key to achieving good mechanical properties in aluminum alloys.We have developed a cellular automaton(CA) based model to simulate the microstructural evolution... The evolution of microstructure during hot deformation is key to achieving good mechanical properties in aluminum alloys.We have developed a cellular automaton(CA) based model to simulate the microstructural evolution in 7075 aluminum alloy during hot deformation.Isothermal compression tests were conducted to obtain material parameters for 7075 aluminum alloy,leading to the establishment of models for dislocation density,nucleation of recrystallized grains,and grain growth.Integrating these aspects with grain topological deformation,our CA model effectively predicts flow stress,dynamic recrystallization(DRX) volume fraction,and average grain size under diverse deformation conditions.A systematic comparison was made between electron back scattered diffraction(EBSD) maps and CA model simulated under different deformation temperatures(573 to 723 K),strain rates(0.001 to 1 s^(-1)),and strain amounts(30% to 70%).These analyses indicate that large strain,high temperature,and low strain rate facilitate dynamic recrystallization and grain refinement.The results from the CA model show good accuracy and predictive capability,with experimental error within 10%. 展开更多
关键词 cellular automaton dynamic recrystallization 7075 aluminum alloy hot compression
下载PDF
{1012}twin–twin intersection-induced lattice rotation and dynamic recrystallization in Mg–6Al–3Sn–2Zn alloy
3
作者 Bin-Jiang Lv Sen Wang +4 位作者 Fu-Hao Gao Ning Cui Yi-Nan Li Tie-Wei Xu Feng Guo 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1529-1539,共11页
This study investigated the formation mechanism of new grains due to twin–twin intersections in a coarse-grained Mg–6Al–3Sn–2Zn alloy during different strain rates of an isothermal compression.The results of elect... This study investigated the formation mechanism of new grains due to twin–twin intersections in a coarse-grained Mg–6Al–3Sn–2Zn alloy during different strain rates of an isothermal compression.The results of electron backscattered diffraction investigations showed that the activated twins were primarily{1012}tension twins,and 60°<1010>boundaries formed due to twin–twin intersections under different strain rates.Isolated twin variants with 60°<1010>boundaries transformed into new grains through lattice rotations at a low strain rate(0.01 s^(−1)).At a high strain rate(10 s^(−1)),the regions surrounded by subgrain boundaries through high-density dislocation arrangement and the 60°<1010>boundaries transformed into new grains via dynamic recrystallization. 展开更多
关键词 Mg alloy Twin-twin intersection Lattice rotation dynamic recrystallization
下载PDF
Variations in dynamic recrystallization behavior and mechanical properties of AZ31 alloy with extrusion temperature 被引量:1
4
作者 Jae Won Cha Sung Hyuk Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第7期2351-2365,共15页
This study investigates the effects of extrusion temperature on the dynamic recrystallization(DRX)behavior of a Mg-3Al-1Zn-0.3Mn(AZ31,wt%)alloy during hot extrusion and on the microstructural characteristics and mecha... This study investigates the effects of extrusion temperature on the dynamic recrystallization(DRX)behavior of a Mg-3Al-1Zn-0.3Mn(AZ31,wt%)alloy during hot extrusion and on the microstructural characteristics and mechanical properties of materials extruded at 350 and 450℃.An increase in the extrusion temperature causes a decrease in the amount of strain energy accumulated in the material during extrusion,because of promoted activation of pyramidal<c+a>slip and dynamic recovery.This reduced strain energy weakens the DRX behavior during extrusion,which eventually results in a decrease in the area fraction of recrystallized grains of the extruded material.The material extruded at 450℃has coarser grains and a stronger basal fiber texture than that extruded at 350℃.As the extrusion temperature increases from 350 to 450℃,the tensile yield strength(TYS)of the extruded material increases from 191.8 to 201.5 MPa,whereas its compressive yield strength(CYS)decreases from 122.5 to 111.0 MPa;consequently,its tension-compression yield stress ratio(CYS/TYS)decreases from 0.64 to 0.55.The increase in the TYS is attributed mainly to the stronger texture hardening and strain hardening effects of the extruded material,and the decrease in the CYS is attributed to the reduced twinning stress resulting from grain coarsening and texture intensification.The microstructural and textural evolutions of the materials during extrusion and the deformation and hardening mechanisms of the extruded materials are discussed in detail. 展开更多
关键词 Mg-Al-Zn alloy EXTRUSION dynamic recrystallization Microstructure Yield asymmetry
下载PDF
Controlling dynamic recrystallization via modified LPSO phase morphology and distribution in Mg-Gd-Y-Zn-Zr alloy 被引量:1
5
作者 Ce Zheng Shuaifeng Chen +3 位作者 Ming Cheng Shihong Zhang Yingju Li Yuansheng Yang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期4218-4234,共17页
Featured initial microstructures of Mg-11Gd-4Y-2Zn-0.5Zr alloy(wt%) were obtained by adjusting temperatures of solid solution and cooling methods, including island intergranular 18R and 14H LPSO phases with low-densit... Featured initial microstructures of Mg-11Gd-4Y-2Zn-0.5Zr alloy(wt%) were obtained by adjusting temperatures of solid solution and cooling methods, including island intergranular 18R and 14H LPSO phases with low-density stacking faults, differentially spaced lamellar intragranular 14H-LPSO phases, and network intergranular 18R-LPSO phases with high-density intragranular stacking faults. Effects of these featured LPSO phases and stacking faults on dynamic recrystallization(DRX) behavior were investigated via hot compression. Promoted DRX behavior via particle stimulated nucleation(PSN) is introduced by coexisting intergranular island 18R and 14H LPSO phases and intragranular wide spacing lamellar 14H-LPSO phases, contributing the highest DRX fraction of 42.6%. Conversely, it is found that DRX behavior with network intergranular 18R-LPSO phases and dense intragranular stacking fault is considerably inhibited with the lowest fraction of 22.8%. That is, the restricted DRX due to dislocations pinning by stacking faults overwhelms the enhanced DRX behavior via PSN of island intergranular 18R and 14H LPSO phases. Specially, compared with dense intragranular lamellar 14H-LPSO phases, high-density stacking faults exert a larger inhibition effect on DRX behavior. 展开更多
关键词 Mg-Gd-Y-Zn-Zr dynamic recrystallization LPSO phases Particle stimulated nucleation Stacking fault
下载PDF
Dynamic Recrystallization Behavior of Q370qE Bridge Steel
6
作者 Caiyi Liu Shicheng Liang +6 位作者 Yan Peng Jianliang Sun Carlo Mapelli Silvia Barella Andrea Gruttadauria Marco Belf Ludovica Rovatti 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第5期330-340,共11页
Bridge steel has been widely used in recent years for its excellent performance. Understanding the high-temperature Dynamic Recrystallization (DRX) behavior of high-performance bridge steel plays an important role in ... Bridge steel has been widely used in recent years for its excellent performance. Understanding the high-temperature Dynamic Recrystallization (DRX) behavior of high-performance bridge steel plays an important role in guiding the thermomechanical processing process. In the present study, the hot deformation behavior of Q370qE bridge steel was investigated by hot compression tests conducted on a Gleeble 3800-GTC thermal-mechanical physical simulation system at temperatures ranging from 900 ℃ to 1100 ℃ and strain rates ranging from 0.01 s^(−1) to 10 s^(−1). The obtained results were used to plot the true stress-strain and work-hardening rate curves of the experimental steel, with the latter curves used to determine the critical strains for the initiation of DRX. The Zener-Hollomon equation was subsequently applied to establish the correspondence between temperature and strain rate during the high-temperature plastic deformation of bridge steel. In terms of the DRX volume fraction solution, a new method for establishing DRX volume fraction was proposed based on two theoretical models. The good weathering and corrosion resistance of bridge steel lead to difculties in microstructure etching. To solve this, the MTEX technology was used to further develop EBSD data to characterize the original microstructure of Q370qE bridge steel. This paper lays the theoretical foundation for studying the DRX behavior of Q370qE bridge steel. 展开更多
关键词 dynamic recrystallization Materials characterization Hot deformation DRX volume fraction model
下载PDF
Processing map and dynamic recrystallization behaviours of 316LN-Mn austenitic stainless steel
7
作者 Shaolong Sheng Yanxin Qiao +2 位作者 Ruzong Zhai Mingyue Sun Bin Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第12期2386-2396,共11页
The hot deformation behaviours of 316LN-Mn austenitic stainless steel were investigated by uniaxial isothermal compression tests at different temperatures and strain rates.The microstructural evolutions were also stud... The hot deformation behaviours of 316LN-Mn austenitic stainless steel were investigated by uniaxial isothermal compression tests at different temperatures and strain rates.The microstructural evolutions were also studied using electron backscatter diffraction.The flow stress decreases with the increasing temperature and decreasing strain rate.A constitutive equation was established to characterize the relationship among the deformation parameters,and the deformation activation energy was calculated to be 497.92 k J/mol.Processing maps were constructed to describe the appropriate processing window,and the optimum processing parameters were determined at a temperature of 1107-1160℃ and a strain rate of 0.005-0.026 s^(-1).Experimental results showed that the main nucleation mechanism is discontinuous dynamic recrystallization(DDRX),followed by continuous dynamic recrystallization(CDRX).In addition,the formation of twin boundaries facilitated the nucleation of dynamic recrystallization. 展开更多
关键词 austenitic stainless steel processing map dynamic recrystallization constitutive equation
下载PDF
Flow softening and dynamic recrystallization behavior of a Mg-Gd-Y-Nd-Zr alloy under elevated temperature compressions
8
作者 Yiping WU Yuzhen JIA +3 位作者 Sha Zhang Yu Liu Hanqing Xiong Gang Chen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2891-2900,共10页
Flow softening behavior of a homogenized Mg-7Gd-4Y-1Nd-0.5Zr alloy under compression to a final strain of∼1.8 at elevated temperatures of 450∼550℃ and a constant strain rate of 2s^(−1) has been investigated by opti... Flow softening behavior of a homogenized Mg-7Gd-4Y-1Nd-0.5Zr alloy under compression to a final strain of∼1.8 at elevated temperatures of 450∼550℃ and a constant strain rate of 2s^(−1) has been investigated by optical microscopy,scanning electron microscopy,electron back-scattered diffraction and transmission electron microscopy.The results show that true stress first rises to the peak point and then drops to the bottom value and increases again with further increasing strain at each temperature.Twinning dynamic recrystallization(DRX)and continuous DRX contribute to the formation of new fine grains at temperatures 450∼475℃ when the restoration is caused by both DRX and texture change due to extension twinning,resulting in the larger softening degrees compared with the softening effects owing to continuous DRX and discontinuous DRX at 500∼550℃ when twinning activation is suppressed.500℃ is the transition temperature denoting a significant decline in the contribution of twinning and TDRX to the strain with increasing temperature.The cuboid-shape phase exists in both homogenized and compressed samples,while the compositions are varied. 展开更多
关键词 Mg-Gd-Y alloy Elevated temperature compression Flow softening dynamic recrystallization
下载PDF
Grain refinement and weak-textured structures based on the dynamic recrystallization of Mg–9.80Gd–3.78Y–1.12Sm–0.48Zr alloy 被引量:3
9
作者 Yunwei Gui Lingxiao Ouyang +3 位作者 Yujie Cui Huakang Bian Quanan Li Akihiko Chiba 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第2期456-466,共11页
We utilized electron backscatter diffraction to investigate the microstructure evolutions of a newly developed magnesium-rare earth alloy(Mg–9.80 Gd–3.78 Y–1.12 Sm–0.48 Zr)during instantaneous hot indirect extrusi... We utilized electron backscatter diffraction to investigate the microstructure evolutions of a newly developed magnesium-rare earth alloy(Mg–9.80 Gd–3.78 Y–1.12 Sm–0.48 Zr)during instantaneous hot indirect extrusion.An equiaxed fine-grained(average grain size of 3.4±0.2μm)microstructure with a weak texture was obtained.The grain refinement was mainly attributed to the discontinuous dynamic recrystallization(DDRX)and continuous DRX(CDRX)processes during the hot indirect extrusion process.The twin boundaries formed during the initial deformation stage effectively increased the number of high angle grain boundaries(HAGBs),which provided sites for new grain nuclei,and hence,resulted in an improved DDRX process.Along with DDRX,CDRX processes characterized by low angle grain boundary(LAGB)networks were also observed in the grain interior due to effective dynamic recovery(DRV)at a relatively high temperature of 773 K and high strain rates.Thereafter,LAGB networks were transformed into HAGB networks by the progressive rotation of subgrains during the CDRX process. 展开更多
关键词 Magnesium-rare earth(Mg-Re)alloy Grain refinement Discontinuous dynamic recrystallization(DDRX) Continuous dynamic recrystallization(CDRX) Hot indirect extrusion
下载PDF
DYNAMIC RECOVERY AND DYNAMIC RECRYSTALLIZATION OF 7005 ALUMINIUM ALLOY DURING HOT COMPRESSION 被引量:33
10
作者 J. Shen S. S. Xie and J. H. tang (General Research Institute for Non - ferrous Metals,Beijing 100088, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第1期379-386,共8页
Dynamic recovery and dynamic recrystallizatin behaviors of AA7005 aluminium alloy (Al - Zn - Mg) during hot compression are investigated by isothermal compression testing.The interdependence of flow stress,stress, s... Dynamic recovery and dynamic recrystallizatin behaviors of AA7005 aluminium alloy (Al - Zn - Mg) during hot compression are investigated by isothermal compression testing.The interdependence of flow stress,stress, strain rate,true strain and deformation temperature for the alloy is analyzed by introduc- ing Zener-Hollomon parameter. A steady - state flow of the 7005 alloy is confirmed to be a thermal- ly activated process.which is governed by rate-controlling mechanisms of dislocations.A hyperbolic sine relationship can satisfactorily correlate temperature, strain rate with flow stress through an Arrhe- nius term that involves thermal activation parameters. The dynamic recovery mechanisms of the alloy are discussed.Cross- slip of jogged screw dislocations is the main dynamic recovery mechanism over the deformation temperatures and strain rates.Subgrains are highly developed in the originally elongat- ed grains.The size of the subgrain increases with decrease of the natural logarithm of Zener- Hol - lomon parameter.Local dynamic recrystallization is operative when the alloy is deformed at temperature of 500℃ and strain rate of 0. 001s - 1. 展开更多
关键词 compression flow stress dynamic recovery dynamic recrystallization restoration mechanism
下载PDF
Hot deformation behavior and dynamic recrystallization kinetics of AZ61 and AZ61+Sr magnesium alloys 被引量:8
11
作者 S.Aliakbari Sani G.R.Ebrahimi A.R.Kiani Rashid 《Journal of Magnesium and Alloys》 SCIE EI CAS 2016年第2期104-114,共11页
In this study,the effect of strontium addition on hot deformation of AZ61 alloy was investigated by hot compression tests.A reference alloy(AZ61)and an Sr-containing alloy(AZ61+Sr)was cast while their average initial ... In this study,the effect of strontium addition on hot deformation of AZ61 alloy was investigated by hot compression tests.A reference alloy(AZ61)and an Sr-containing alloy(AZ61+Sr)was cast while their average initial grain size were supposed to be about 140 and 40μm,respectively.In AZ61+Sr alloy,the Sr-containing precipitations were stable at homogenization temperature.Analysing the hot compression curves,it was revealed that dynamic recrystallization phenomenon had occurred and controlled the thermomechanical behaviour of the alloys.The derived constitutive equations showed that the hot deformation parameters(n and Q)in AZ61+Sr alloy is smaller than those of AZ61 alloy;this can be related to the small initial grain size and the lower amounts of solute aluminium atoms.The analysis of DRX kinetics along with the micrographs of the deformed microstructures showed that at the same condition the development of DRXed microstructure in AZ61+Sr alloy was faster than AZ61 alloy.The increased recrystallized microstructure was interpretated to be attributed to(1)the more grain boundaries present and(2)the existance of the Al-Mg-Sr precipitations assisted the PSN mechanism.Also,the attenuated intensity of the basal texture of AZ61+Sr was related to the DRX fraction of microstructure. 展开更多
关键词 AZ61 alloy STRONTIUM DRX Grain size PSN dynamic recrystallization kinetics
下载PDF
Nucleation mechanisms of dynamic recrystallization in Inconel 625 superalloy deformed with different strain rates 被引量:8
12
作者 Guo, Qingmiao Li, Defu +3 位作者 Peng, Haijian Guo, Shengli Hu, Jie Du, Peng 《Rare Metals》 SCIE EI CAS CSCD 2012年第3期215-220,共6页
The effects of strain rates on the hot working characteristics and nucleation mechanisms of dynamic recrystallization (DRX) were studied by optical microscopy and electron backscatter diffraction (EBSD) technique. Hot... The effects of strain rates on the hot working characteristics and nucleation mechanisms of dynamic recrystallization (DRX) were studied by optical microscopy and electron backscatter diffraction (EBSD) technique. Hot compression tests were conducted using a Gleeble-1500 simulator at a true strain of 0.7 in the temperature range of 1000 to 1150 °C and strain rate range of 0.01 to 10.00 s?1. It is found that the size and volume fraction of the DRX grains in hot-deformed Inconel 625 superalloy firstly decrease and then increase with increasing strain rate. Meanwhile, the nucleation mechanism of DRX is closely related to the deformation strain rate due to the deformation thermal effect. The discontinuous DRX (DDRX) with bulging of original grain boundaries is the primary nucleation mechanism of DRX, while the continuous DRX (CDRX) with progressive subgrain rotation acts as a secondary nucleation mechanism. The twinning formation can activate the nucleation of DRX. The effects of bulging of original grain boundaries and twinning formation are firstly gradually weakened and then strengthened with the increasing strain rate due to the deformation thermal effect. On the contrary, the effect of subgrain rotation is firstly gradually strengthened and then weakened with the increasing strain rate. 展开更多
关键词 nucleation mechanisms dynamic recrystallization Inconel 625 superalloy deformation strain rate
下载PDF
Deformation behavior and dynamic recrystallization of Mg-Y-Nd-Gd-Zr alloy 被引量:7
13
作者 赵欣 张奎 +3 位作者 李兴刚 李永军 何庆彪 孙建锋 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第6期846-850,共5页
The characteristics of dynamic recrystallization (DRX) in Mg-Y-Nd-Gd-Zr-RE magnesium alloy were investigated by compression tests at temperatures between 523 and 723 K and at strain rates ranging from 0.002 to 1 s^-... The characteristics of dynamic recrystallization (DRX) in Mg-Y-Nd-Gd-Zr-RE magnesium alloy were investigated by compression tests at temperatures between 523 and 723 K and at strain rates ranging from 0.002 to 1 s^-1 with maximum strain of 0.693. The strainhardening rate can be obtained from true stress-true strain curves, plots of θ-σ, -(δθ/δσ-)-a and lnθ-σ in different compression conditions were obtained by further study. The critical condition of the onset of DRX process was determined as ((δ/δσ( δθ/δσ))=0. In the range of the above deformation temperature and strain rate, the ratio of critical stress (σc) to peak stress (σm) and critical strain (εc) to the peak strain (εm) stood at σc/σm=0.62-0.89 and εc/εm=0.11-0.37, respectively. DRX could be observed during hot detormation process, microstructure evolution of the magnesium alloy at different temperatures and strain rates were studied with the aid of optical microscope(OM), and the average recrystallized grain size was measured by means of intercepts on photomicrographs. It was shown that the average dynamically recrystallized grain size (drew) changed with different deformation parameters, the natural logarithm of the average recrystallized grain size varied linearly with the natural logarithm of Zener-Hollomon parameter; the peak stress changed with the average recrystallized grain size, and the natural logarithm of the average recrystallized grain size varied linearly with the natural logarithm of the peak stress. 展开更多
关键词 hot-compression dynamic recrystallization (DRX) strain-hardening rate average recrystallized grain size rare earths
下载PDF
Dynamic Recrystallization Behavior of a Fe-Cr-Ni Super-Austenitic Stainless Steel 被引量:7
14
作者 A.Hoseini Asli A.Zarei-Hanzaki 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第5期603-606,共4页
The super-austenitic stainless steels are extensively utilized in the seamless tubes production for oil extraction industries. Due to the importance of thermo-mechanical processing in the production of these tubes, th... The super-austenitic stainless steels are extensively utilized in the seamless tubes production for oil extraction industries. Due to the importance of thermo-mechanical processing in the production of these tubes, the dynamic recrystallization (DRX) characteristics of a Cr-Ni super austenitic stainless steel (1.4563) were investigated in the present study. This was performed using the hot compression testing method in the temperature range of 950-1150℃ and the strain rate of 10^-3-10^-1 s^-1. The initiation and evolution of DRX were examined through microstructural analysis. The results indicated that the recrystallized grain formed a necklace type structure at the prior austenite grain boundaries at higher strain rates. In addition, DRX nucleation occurs by bulging and successive strain induced boundary migration (SIBM). 展开更多
关键词 Sanicro 28 dynamic recrystallization Super-austenitic Necklace structure
下载PDF
Simulation of Dynamic Recrystallization Using Cellular Automaton Method 被引量:7
15
作者 XIAOHong XIEHong-biao +1 位作者 YANYan-hong JunYANAGIMOTO 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2004年第2期42-45,共4页
A new modeling approach that couples fundamental metallurgical principles of dynamical recrystallization with the cellular automaton method was developed to simulate the microstructural evolution linking with the plas... A new modeling approach that couples fundamental metallurgical principles of dynamical recrystallization with the cellular automaton method was developed to simulate the microstructural evolution linking with the plastic flow behavior during thermomechanical processing.The driving force for the nucleation and growth of dynamically recrystallized grain is the volume free energy due to the stored dislocation density of a deformation matrix.The growth terminates the impingement.The model is capable of simulating kinetics,microstructure and texture evolution during recrystallization.The predictions of microstructural evolution agree with the experimental results. 展开更多
关键词 dynamic recrystallization MICROSTRUCTURE cellular automaton method
下载PDF
Effect of circumferential strain rate on dynamic recrystallization and texture of Mg-13Gd-4Y-2Zn-0.5Zr alloy during rotary backward extrusion 被引量:7
16
作者 Yingze Meng Jianmin Yu +3 位作者 Guanshi Zhang Yaojin Wu Zhimin Zhang Zheng Shi 《Journal of Magnesium and Alloys》 SCIE EI CAS 2020年第4期1228-1237,共10页
Gleeble-3500 thermal simulator was applied to realize the rotary backward extrusion forming of Mg-13Gd-4Y-2Zn-0.5Zr(wt%)alloy at different circumferential strain rate from 0.009 s^(-1)to 0.027 s^(-1)at 400℃and the dy... Gleeble-3500 thermal simulator was applied to realize the rotary backward extrusion forming of Mg-13Gd-4Y-2Zn-0.5Zr(wt%)alloy at different circumferential strain rate from 0.009 s^(-1)to 0.027 s^(-1)at 400℃and the dynamic recrystallization mechanism and texture evolution were studied.The results show that the grain size of the alloy was obviously refined after rotary backward extrusion.As the circumferenlial strain rate increased,the dynamic recrystallization fraction gradually increased causing the grain size decreased and the distribution of microstructure became more uniform.At the same time,the texture of{0001},{10-10},{11-20}was weakened and the grain orientation distribution became more random.With the increase of circumferential strain rate,the discontinuous dynamic recrystallization mechanism became dominant,which promoted the weakening of texture and grain refinement of the alloy. 展开更多
关键词 Mg-Gd-Y-Zn-Zr alloy Rotary backward extrusion dynamic recrystallization Texture
下载PDF
Effect of Nb on the dynamic recrystallization behavior of high-grade pipeline steels 被引量:4
17
作者 Tao Niu Yong-lin Kang +3 位作者 Hong-wei Gu Yu-qun Yin Ming-liang Qiao Jin-xing Jiang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第6期742-747,共6页
The dynamic recrystallization (DRX) behavior of high-grade X80/X100 pipeline steels with different Nb contents was investi- gated through single pass compression experiment using a Gleeble 1500 thermomechanical simu... The dynamic recrystallization (DRX) behavior of high-grade X80/X100 pipeline steels with different Nb contents was investi- gated through single pass compression experiment using a Gleeble 1500 thermomechanical simulator. By the regression of stress-sWain data obtained in the experiment, the deformation activation energy of DRX was identified, and the critical strain was calculated with the Po- liak-Jonas (P-J) method. Based on the analysis, the occurrence condition and kinetics of DRX were determined. The results show that as the Nb content increases from 0.08wt% to 0.095wt%, the activation energy of recrystallization raises from 365 to 395 kJ/mol. The critical swain of DRX can be determined more accurately by the P-J method, and the ratios of critical swain to peak sWain of XS0 and X100 pipeline steels are 0.51 and 0.49, respectively, which are similar to the results achieved by other researchers and calculated with empirical formulae. 展开更多
关键词 pipeline steels NIOBIUM dynamic recrystallization activation energy RETARDATION KINETICS
下载PDF
Texture evolution induced by twinning and dynamic recrystallization in dilute Mg-1Sn-1Zn-1Al alloy during hot compression 被引量:6
18
作者 Meijuan Hao Weili Cheng +4 位作者 Lifei Wang Ehsan Mostaed Liping Bian Hongxia Wang Xiaofeng Niu 《Journal of Magnesium and Alloys》 SCIE EI CAS 2020年第3期899-909,共11页
Texture evolution of an extruded dilute Mg-1Sn-1Zn-1Al alloy was thoroughly investigated based on the twinning and dynamic recrystallization(DRX)behavior via hot compression at a strain rate of 10 s^(-1)and temperatur... Texture evolution of an extruded dilute Mg-1Sn-1Zn-1Al alloy was thoroughly investigated based on the twinning and dynamic recrystallization(DRX)behavior via hot compression at a strain rate of 10 s^(-1)and temperature of 225℃.It was found that the types and intensities of the texture are strongly dependent on the fraction of twins and DRX modes as well as regions where sub-grain boundaries(sub-GBs)are intensively accumulated.At the initial stage of deformation,the formation of compression direction(CD)-tilted basal texture was mainly determined by the occurrence of{101^(-)2}extension twins.As the strain increases,the variation in the texture intensity was greatly dominated by the DRX modes but the type of main texture remained unchanged.These findings are of great importance for texture modification of wrought Mg-Sn-based alloys during post-deformation. 展开更多
关键词 Mg-1Sn-1Zn-1Al Hot deformation TWINNING dynamic recrystallization Texture
下载PDF
THE HOT DEFORMATION BEHAVIOR AND DYNAMIC RECRYSTALLIZATION MODEL OF 35CrMo STEEL 被引量:5
19
作者 B.Zhang H.B.Zhang +1 位作者 X.Y.Ruan Y.Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2003年第3期183-191,共9页
The isothermal single-stage compression of 35CrMo structural steel has been carried out by using Gleeble 1500 simulator at the temperature range of 950℃ to 1150℃ and strain rate range of 0.01s-1 to 10s-1. The effect... The isothermal single-stage compression of 35CrMo structural steel has been carried out by using Gleeble 1500 simulator at the temperature range of 950℃ to 1150℃ and strain rate range of 0.01s-1 to 10s-1. The effect of hot deformation parameters, such as strain rate, deformed temperature and initial grain size on the flow stress behavior was investigated. The activation energy of tested alloy was calculated, which is 378.16kJ/mol; The relationships between the peak stress (σp), the peak stain (εp), the critical strain (εc) and Z parameter were established. The micro structure evolution shows the pre-existing austenite grain boundaries constitute the principal nucleation sites for dynamic recrystallization (DRX), and the initial austenite grain size affects the grain size of DRX slightly. The kinetic mathematical model of DRX of 35CrMo is: XDRX=1-exp(-3.23-2.28) and Ddyn = 2.252× 10Z-0.22. 展开更多
关键词 dynamic recrystallization deformation activation energy stress/strain curve grain size
下载PDF
Dynamic Recrystallization of a Cr-Ni-Mo-Cu-Ti-V Precipitation Hardenable Stainless Steel 被引量:6
20
作者 A.Momeni A.Shokuhfar S.M.Abbasi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第6期775-778,共4页
In this research, the dynamic recrystallization (DRX) behavior of an as-cast precipitation hardenable (PH) stainless steel was investigated by conducting hot compression tests at temperatures between 950-1150℃ an... In this research, the dynamic recrystallization (DRX) behavior of an as-cast precipitation hardenable (PH) stainless steel was investigated by conducting hot compression tests at temperatures between 950-1150℃ and under strain rates of 0.001-1 s^-1. The flow stress curves show that the DRX is responsible for flow softening during hot compression. The effects of temperature and strain rate on the strain and stress corresponding to peak point (εp and σp) of flow curve were analyzed individually. It is realized that, they increase with strain rate and decrease with temperature. The relationship between Zener-Hollomon parameter (Z) and εp was investigated and the equation of εp=4.3×10^-4^0.14 was proposed. The strain for the maximum rate of DRX (εmax) was determined under different deformation conditions. Therefore, it is realized that it increases with Z parameter and vise versa. On the basis of obtained results, the equation of εmax=9.5 × 10^-4Z0.12 was proposed. 展开更多
关键词 dynamic recrystallization Hot compression Precipitation hardening stainless steel
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部