Circulating fluidized bed flue gas desulfurization(CFB-FGD) process has been widely applied in recent years. However, high cost caused by the use of high-quality slaked lime and difficult operation due to the complex ...Circulating fluidized bed flue gas desulfurization(CFB-FGD) process has been widely applied in recent years. However, high cost caused by the use of high-quality slaked lime and difficult operation due to the complex flow field are two issues which have received great attention. Accordingly, a laboratory-scale fluidized bed reactor was constructed to investigate the effects of physical properties and external conditions on desulfurization performance of slaked lime, and the conclusions were tried out in an industrial-scale CFB-FGD tower. After that, a numerical model of the tower was established based on computational particle fluid dynamics(CPFD) and two-film theory. After comparison and validation with actual operation data, the effects of operating parameters on gas-solid distribution and desulfurization characteristics were investigated. The results of experiments and industrial trials showed that the use of slaked lime with a calcium hydroxide content of approximately 80% and particle size greater than 40 μm could significantly reduce the cost of desulfurizer. Simulation results showed that the flow field in the desulfurization tower was skewed under the influence of circulating ash. We obtained optimal operating conditions of 7.5 kg·s^(-1)for the atomized water flow, 70 kg·s^(-1)for circulating ash flow, and 0.56 kg·s^(-1)for slaked lime flow, with desulfurization efficiency reaching 98.19% and the exit flue gas meeting the ultraclean emission and safety requirements. All parameters selected in the simulation were based on engineering examples and had certain application reference significance.展开更多
The level of deformation development of surrounding rocks is a vital predictor to evaluate impending coal mine disasters and it is important to establish accurate measurements of the deformed status to ensure coal min...The level of deformation development of surrounding rocks is a vital predictor to evaluate impending coal mine disasters and it is important to establish accurate measurements of the deformed status to ensure coal mine safety. Traditional deformation monitoring methods are mostly based on single parameter, in this paper, multiple approaches are integrated: firstly, both electric and elastic models are established,from which electric field distribution and seismic wave recording are calculated and finally, the resistivity profiles and source position information are determined using inversion methods, from which then the deformation and failure of mine floor are evaluated. According to the inversion results of both electric and seismic field signals, multiple-parameter dynamic monitoring of surrounding rock deformation in deep mine can be performed. The methodology is validated using numerical simulation results which shows that the multi-parameter dynamic monitoring methods have better results for surrounding rock deformation in deep mine monitoring than single parameter methods.展开更多
Focused upon the dynamic changing regularity and tendency of overburden movement and bed separation developing during the strip mining and stoping under rail- ways were simulated by ANSYS model.The results show that m...Focused upon the dynamic changing regularity and tendency of overburden movement and bed separation developing during the strip mining and stoping under rail- ways were simulated by ANSYS model.The results show that movement and rheology developing of key strata is one of the main reasons to cause surface subsidence and to further induce deformation of surface railways.It provids a basis for taking efficient meas- ures to control the deformation of surface railways.展开更多
In the past two decades,the world’s unmanned aerial vehicle(UAV)industry has developed rapidly.Various kinds of UAVs have been used in military and civilian fields.Based on the characteristics of UAVs and the develop...In the past two decades,the world’s unmanned aerial vehicle(UAV)industry has developed rapidly.Various kinds of UAVs have been used in military and civilian fields.Based on the characteristics of UAVs and the development of aerodynamics,this article analyzes the development of aerodynamic optimization design and dynamic numerical simulation technology,then lists engineering applications.Both aerodynamic optimization design and dynamic numerical simulation have greatly shortened the UAV design period and reduced the research and design cost.These two methods gradually replace traditional methods such as wind tunnel test.展开更多
Al-Sc and Al-Ti semi-infinite targets were impacted by high-speed projectiles at velocities of 0.8, 1.0, 1.2 and 1.5 km/s, respectively. It is found that the Al-Sc targets demonstrate more excellent ability to resist ...Al-Sc and Al-Ti semi-infinite targets were impacted by high-speed projectiles at velocities of 0.8, 1.0, 1.2 and 1.5 km/s, respectively. It is found that the Al-Sc targets demonstrate more excellent ability to resist high-speed impact. It is concluded that different microstructures of Al-Sc and Al-Ti alloys, including different grain sizes and secondary particles precipitated in the matrix, result in their greatly different capabilities of resisting impact. Furthermore, the effect of the size range ofnanoscale A13Sc precipitate in A1-Sc alloy on the resistance of high-speed impact was investigated. In addition, computer simulations and validation of these simulations were developed which fairly accurately represented residual crater shapes/geometries. Validated computer simulations allowed representative extrapolations of impact craters well beyond the laboratory where melt and solidification occurred at the crater wall, especially for hypervelocity impact (〉5 km/s).展开更多
In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step ...In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step for the dynamic response simulation of rock mass in a high in-situ stress field.In this paper,stress initialization methods,including their principles and operating procedures for reproducing steady in-situ stress state in LS-DYNA,are first introduced.Then the most popular four methods,i.e.,explicit dynamic relaxation(DR)method,implicit-explicit sequence method,Dynain file method and quasi-static method,are exemplified through a case analysis by using the RHT and plastic hardening rock material models to simulate rock blasting under in-situ stress condition.Based on the simulations,it is concluded that the stress initialization results obtained by implicit-explicit sequence method and dynain file method are closely related to the rock material model,and the explicit DR method has an obvious advantage in solution time when compared to other methods.Besides that,it is recommended to adopt two separate analyses for the whole numerical simulation of rock mass under the combined action of in-situ stress and dynamic disturbance.展开更多
A laboratory salt-water dynamics experiment using unsaturated soils in packed silt loam and clay soil columns withdifferent soil texture profiles and groundwater levels under crops were conducted to study the changes ...A laboratory salt-water dynamics experiment using unsaturated soils in packed silt loam and clay soil columns withdifferent soil texture profiles and groundwater levels under crops were conducted to study the changes of salt-waterdynamics induced by water uptake of crops and to propose the theoretical basis for the regulation and control of salt-water dynamics as well as to predict salinity levels. The HYDRUS 1D model was applied to simulate the one-dimensionalmovement of water and salt transport in the soil columns. The results showed that the salts mainly accumulated in theplow layer in the soil columns under crops. Soil water and salt both moved towards the plow layer due to soil waterabsorption by the crop root system. The salt contents in the column with lower groundwater were mostly greater thanthose with high groundwater. The water contents in the soil columns increased from top to the bottom due to plant rootwater uptake. The changes in groundwater level had little influence on water content of the root zone in the soil columnswith crop planting. Comparison between the simulated and the determined values showed that model simulation resultswere ideal, so it is practicable to do numerical simulation of soil salt and water transport by the HYDRUS 1D model.Furthermore, if the actual movement of salt and water in fields is to be described in detail, much work needs to be done.The most important thing is to refine the parameters and select precise boundary conditions.展开更多
Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability...Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability under purely microseisms and the influence of five factors, including seismic amplitude, slope height, slope angle, strata inclination and strata thickness, were considered. The experimental results show that the natural frequency of the slope decreases and damping ratio increases as the earthquake loading times increase. The dynamic strength reduction method is adopted for the stability evaluation of the bedding rock slope in numerical simulation, and the slope stability decreases with the increase of seismic amplitude, increase of slope height, reduction of strata thickness and increase of slope angle. The failure mode of a mid-dip bedding rock slope in the shaking table test is integral slipping along the bedding surface with dipping tensile cracks at the slope rear edge going through the bedding surfaces. In the numerical simulation, the long-term stability of a mid-dip bedding slope is worst under frequent microseisms and the slope is at risk of integral sliding instability, whereas the slope rock mass is more broken than shown in the shaking table test. The research results are of practical significance to better understand the formation mechanism of reservoir landslides and prevent future landslide disasters.展开更多
In recent twenty years, much numerical simulation work has been done on the evolution of Qinghai-Xizang (Tibetan) plateau. In this paper some principal numerical models and results are reviewed and analyzed. The earli...In recent twenty years, much numerical simulation work has been done on the evolution of Qinghai-Xizang (Tibetan) plateau. In this paper some principal numerical models and results are reviewed and analyzed. The earlier plane stress or plane strain model has much discrepancy with the actual deformation of Qinghai-Xizang plateau, such as the thickening of Tibetan crust and the lateral extrusion of Tibet along strike-slip faults. The thin viscous sheet model and the thin-plate model may simulate the change of the crustal thickness and the deformation pro-duced by gravitational force. It is suitable for studying the large-scale and long-time deformation. The influence of faults on the deformation of Tibetan plateau should be further studied.展开更多
An MOM2 based 3-dimentional prognostic baroclinic Z-ordinate model was established to study the circulation in eastern China seas, considering the topography, inflow and outflow on the open boundary, wind stress, temp...An MOM2 based 3-dimentional prognostic baroclinic Z-ordinate model was established to study the circulation in eastern China seas, considering the topography, inflow and outflow on the open boundary, wind stress, temperature and salinity exchange on the sea surface. The results were consistent with observation and showed that the Kuroshio intrudes in large scale into the East China Sea continental shelf East China, during which its water is exchanged ceaselessly with outer sea water along Ryukyu Island. The Tsushima Warm Current is derived from several sources, a branch of the Kuroshio, part of the Taiwan Warm Current, and Yellow Sea mixed water coming from the west of Cheju Island. The water from the west of Cheju Island contributes ap-proximately 13% of the Isushima Warm Current total transport through the Korea Strait. The circulation in the Bohai Sea and Yellow Sea is basically cyclonic circulation, and is comprised of coastal currents and the Yellow Sea Warm Current. Besides simulation of the real circulation, numerical experiments were conducted to study the dynamic mechanism. The numerical experiments indicated that wind directly drives the East China Sea and Yellow Sea Coastal Currents, and strengthens the Korea Coastal Current and Yellow Sea Warm Current. In the no wind case, the kinetic energy of the coastal current area and main YSWC area is only 1% of that of the wind case. Numerical experiments also showed that the Tsushima Warm Current is of great importance to the formation of the Korea Coastal Current and Yellow Sea Warm Current.展开更多
The mechanism and the course of two_dimensional nonlinear dynamic system of interspecific interaction were dealt with systematically. By extending the Lotka_Volterra model from the viewpoint of biomechanics, it develo...The mechanism and the course of two_dimensional nonlinear dynamic system of interspecific interaction were dealt with systematically. By extending the Lotka_Volterra model from the viewpoint of biomechanics, it developed new models of two_dimensional nonlinear autonomous and nonautonomous dynamic systems, with its equilibrium point's stability and the existence and stability of its periodical solutions analyzed, and did numerical simulation experiments on its dynamics course. The results show that efficiency of interaction between two populations, time_varying effort, and change direction of action coefficient and reaction coefficient have important influences on the stability of dynamic system, that too large or too small interspecific interaction efficiency and contrary change direction of action coefficient and reaction coefficient may result in the nonstability of the system, and thus it is difficult for two populations to coexist, and that time_varying active force contributes to system stability.展开更多
According to the biomechanic theory and method, the dynamic mechanism of crop growth under the external force action of multi_environment factors (light, temperature,soil and nutrients etc.) was comprehensively explor...According to the biomechanic theory and method, the dynamic mechanism of crop growth under the external force action of multi_environment factors (light, temperature,soil and nutrients etc.) was comprehensively explored.Continuous_time Markov(CTM) approach was adopted to build the dynamic model of the crop growth system and the simulated numerical method. The growth rate responses to the variation of the external force and the change of biomass saturation value were studied. The crop grew in the semiarid area was taken as an example to carry out the numerical simulation analysis, therefore the results provide the quantity basis for the field management. Comparing the dynamic model with the other plant growth model, the superiority of the former is that it displays multi_dimension of resource utilization by means of combining macroscopic with microcosmic and reveals the process of resource transition. The simulation method of crop growth system is advanced and manipulated. A real simulation result is well identical with field observational results.展开更多
To study the dynamic mechanical properties of tuff under different environmental conditions,the tuff from an ancient quarry in Shepan Island was prepared.The impact damage to the rock was tested using a triaxial dynam...To study the dynamic mechanical properties of tuff under different environmental conditions,the tuff from an ancient quarry in Shepan Island was prepared.The impact damage to the rock was tested using a triaxial dynamic impact mechanical testing system(TDIMTS)with different ground stresses,temperatures,and groundwater pressures.The time-strain relationship,dynamic stress-strain relationship,energy dissipation law,energy-peak strain relationship,and the impact damage pattern of the tuff specimens under impact air pressures were investigated.The TDIMTS experiment on ancient underground rock mass under impact loading was also simulated using the finite element analysis software LS-DYNA based on the Holmquist-Johnson-Cook(HJC)material model.The dynamic failure process,failure pattern and peak stress of tuff specimen were calculated.The simulation results obtained using the above methods were in good agreement with the experimental results.The results of the dynamic experiment show that with the same local stress,groundwater pressure,and temperature,the damage to the tuff specimens caused by blasting and quarrying disturbances gradually increases as the impact pressure increases.Under the same local stress,groundwater pressure,and temperature,the energy required to rupture the tuffs in ancient underground caverns is relatively small if the impact pressure is low accordingly,but as the impact pressure increases,the damage to the tuff caused by quarrying disturbance gradually increases.The damage gradually increases and the degree of damage to the tuff and the strain energy exhibit asymptotic growth when the tuff specimens are subjected to the greater strain energy,increasing the degree of rupturing of the tuff.In addition,the average crushing size decreases with increasing strain energy.By comparing the simulation results with the experimental results,it was found that the HJC model reflected the dynamic impact performance of tuff specimen,and the simulation results showed an evident strain rate effect.These results of this study can offer some guidance and theoretical support for the stability evaluation,protection,and safe operation of the ancient underground caverns in future.展开更多
Sand fences made of punched steel plate(PSP)have recently been applied to control wind-blown sand in desertified and Gobi areas due to their strong wind resistance and convenient in situ construction.However,few studi...Sand fences made of punched steel plate(PSP)have recently been applied to control wind-blown sand in desertified and Gobi areas due to their strong wind resistance and convenient in situ construction.However,few studies have assessed the protective effect of PSP sand fences,especially through field observations.This study analyzes the effects of double-row PSP sand fences on wind and sand resistance using field observations and a computational fluid dynamics(CFD)numerical simulation.The results of field observations showed that the average windproof efficiencies of the first-row and second-row sand fences were 79.8%and 70.8%,respectively.Moreover,the average windproof efficiencies of the numerical simulation behind the first-row and second-row sand fences were 89.8%and 81.1%,respectively.The sand-resistance efficiency of the double-row PSP sand fences was 65.4%.Sand deposition occurred close to the first-row sand fence;however,there was relatively little sand on the leeward side of the second-row sand fence.The length of sand accumulation near PSP sand fences obtained by numerical simulation was basically consistent with that through field observations,indicating that field observations combined with numerical simulation can provide insight into the complex wind-blown sand field over PSP sand fences.This study indicates that the protection efficiency of the double-row PSP sand fences is sufficient for effective control of sand hazards associated with extremely strong wind in the Gobi areas.The output of this work is expected to improve the future application of PSP sand fences.展开更多
This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used...This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used in numerical study on internal combustion engine with vertical and inclined valves, and has higher calculation precision. A numerical simulation (on the intake process of a two-valve engine with a semi-sphere combustion chamber and a radial intake port) is provided for analysis of the velocity field and pressure field of different plane at different crank angles. The results revealed the formation of the tumble motion, the evolution of flow field parameters and the variation of tumble ratios as important information for the design of engine in-take system.展开更多
In recent twenty years, much numerical simulation work has been done on the evolution of Qinghai-Xizang (Tibetan) plateau. In this paper some principal numerical models and results are reviewed and analyzed. The earli...In recent twenty years, much numerical simulation work has been done on the evolution of Qinghai-Xizang (Tibetan) plateau. In this paper some principal numerical models and results are reviewed and analyzed. The earlier plane stress or plane strain model has much discrepancy with the actual deformation of Qinghai-Xizang plateau, such as the thickening of Tibetan crust and the lateral extrusion of Tibet along strike-slip faults. The thin viscous sheet model and the thin-plate model may simulate the change of the crustal thickness and the deformation pro-duced by gravitational force. It is suitable for studying the large-scale and long-time deformation. The influence of faults on the deformation of Tibetan plateau should be further studied.展开更多
Three-dimensional transient numerical simulation of gas exchange process in a four-stroke motorcycle engine with a semi-spherical combustion chamber with two tilt valves was studied. Combination of the grid re-meshing...Three-dimensional transient numerical simulation of gas exchange process in a four-stroke motorcycle engine with a semi-spherical combustion chamber with two tilt valves was studied. Combination of the grid re-meshing method and the snapper technique made the valves move smoothly. The flow structure and pattern in a complete engine cycle were described in detail. Tumble ratios around the x-axis and y-axis were analyzed. Comparison of computed pressure with experimental pressure under motored condition revealed that the simulation had high calculation precision; CFD simulation can be regarded as an im-portant tool for resolving the complex aerodynamic behavior in motorcycle engines.展开更多
Jet pulse assembly is one of the main components of jet hydraulic oscillator.The pressure wave characteristics produced by jet pulse assembly have an important influence on the performance of the tool.In this paper,th...Jet pulse assembly is one of the main components of jet hydraulic oscillator.The pressure wave characteristics produced by jet pulse assembly have an important influence on the performance of the tool.In this paper,the structure and working principle of jet pulse assembly are studied,the mechanical analysis model of piston rod is established,the dynamic resistance ratio formula of jet pulse assembly is deduced,and the numerical simulation test of 89-mm jet pulse assembly structure parameters is carried out.The results show that the piston rod downward stroke is driven by both the jet element driving force and the throttle plate load driving force,and can stably descend.The driving force of the piston rod upward stroke jet element is opposite to the load acting force of the throttle disc,and the jet driving force needs to be greater than the load resistance of the throttle disc to stably ascend.The dynamic resistance ratio formula is deduced.When the area of the end of the piston rod is reduced,the resistance of the throttle disc is reduced and the jet power is increased,thus solving the problem of insufficient power of the piston rod in the upstroke and ensuring the normal operation of the tool.Ten groups of numerical simulation tests were carried out,and it was found that the pressure amplitude and pressure drop of the tool decreased significantly with the increase of the tool size,and the error between the numerical simulation value and the theoretical calculation value was less than 9%,which verified the correctness of the theory.It is suggested to select tools on site according to the drilling construction situation to ensure the drilling effect.展开更多
In this paper, the mathematical and physical model was developed based on thermodynamics and solidification theory before the eutectoid transformation of nodular graphite iron occurred. The Local Element Substitute an...In this paper, the mathematical and physical model was developed based on thermodynamics and solidification theory before the eutectoid transformation of nodular graphite iron occurred. The Local Element Substitute and Magnification Method was brought forward and 3-dimensional numerical simulation program based on the model and the new assistant algorithm was developed and used to calculate the samples. Results of calculation have good agreement with experimental data. To display the microstructure formation during solidification of nodular graphite iron, a 2-dimensional numerical simulation program combined with the result of the 3-dimensional numerical simulation of experimental samples was compiled.展开更多
This paper presents a numerical investigation of the axisymmetric, pressure driven motion of single file erythrocyte (i.e., red blood cell) suspensions flowing in capillaries of diameter 8-11 μm. Our study success-fu...This paper presents a numerical investigation of the axisymmetric, pressure driven motion of single file erythrocyte (i.e., red blood cell) suspensions flowing in capillaries of diameter 8-11 μm. Our study success-fully recreates several important in vivo hemodynamic and hemorheological properties of microscopic blood flow, such as parachute shape of the cells, blunt velocity profile, and the Fahraeus effect, and they have been shown to have strong dependence on cell deformability, hematocrit and vessel size.展开更多
基金supported by National Natural Science Foundation of China(52336005 and 52106133).
文摘Circulating fluidized bed flue gas desulfurization(CFB-FGD) process has been widely applied in recent years. However, high cost caused by the use of high-quality slaked lime and difficult operation due to the complex flow field are two issues which have received great attention. Accordingly, a laboratory-scale fluidized bed reactor was constructed to investigate the effects of physical properties and external conditions on desulfurization performance of slaked lime, and the conclusions were tried out in an industrial-scale CFB-FGD tower. After that, a numerical model of the tower was established based on computational particle fluid dynamics(CPFD) and two-film theory. After comparison and validation with actual operation data, the effects of operating parameters on gas-solid distribution and desulfurization characteristics were investigated. The results of experiments and industrial trials showed that the use of slaked lime with a calcium hydroxide content of approximately 80% and particle size greater than 40 μm could significantly reduce the cost of desulfurizer. Simulation results showed that the flow field in the desulfurization tower was skewed under the influence of circulating ash. We obtained optimal operating conditions of 7.5 kg·s^(-1)for the atomized water flow, 70 kg·s^(-1)for circulating ash flow, and 0.56 kg·s^(-1)for slaked lime flow, with desulfurization efficiency reaching 98.19% and the exit flue gas meeting the ultraclean emission and safety requirements. All parameters selected in the simulation were based on engineering examples and had certain application reference significance.
基金financial support from the Fundamental Research Funds for the Central Universities of China (No. 2015QNB19)the financial support from the Open Fund of Key Laboratory of Safety and High-efficiency Coal Mining, Ministry of Education of China (No. JYBSYS2015107)+2 种基金the National Natural Science Foundation of China (Nos. 51404254, 41430317 and U1261202)the China Postdoctoral Science Foundation of China (No. 2014M560465)the Jiangsu Planned Projects for Postdoctoral Research Funds of China (No. 1302050B)
文摘The level of deformation development of surrounding rocks is a vital predictor to evaluate impending coal mine disasters and it is important to establish accurate measurements of the deformed status to ensure coal mine safety. Traditional deformation monitoring methods are mostly based on single parameter, in this paper, multiple approaches are integrated: firstly, both electric and elastic models are established,from which electric field distribution and seismic wave recording are calculated and finally, the resistivity profiles and source position information are determined using inversion methods, from which then the deformation and failure of mine floor are evaluated. According to the inversion results of both electric and seismic field signals, multiple-parameter dynamic monitoring of surrounding rock deformation in deep mine can be performed. The methodology is validated using numerical simulation results which shows that the multi-parameter dynamic monitoring methods have better results for surrounding rock deformation in deep mine monitoring than single parameter methods.
基金the National Natural Science Funds Committee(50174035)
文摘Focused upon the dynamic changing regularity and tendency of overburden movement and bed separation developing during the strip mining and stoping under rail- ways were simulated by ANSYS model.The results show that movement and rheology developing of key strata is one of the main reasons to cause surface subsidence and to further induce deformation of surface railways.It provids a basis for taking efficient meas- ures to control the deformation of surface railways.
文摘In the past two decades,the world’s unmanned aerial vehicle(UAV)industry has developed rapidly.Various kinds of UAVs have been used in military and civilian fields.Based on the characteristics of UAVs and the development of aerodynamics,this article analyzes the development of aerodynamic optimization design and dynamic numerical simulation technology,then lists engineering applications.Both aerodynamic optimization design and dynamic numerical simulation have greatly shortened the UAV design period and reduced the research and design cost.These two methods gradually replace traditional methods such as wind tunnel test.
文摘Al-Sc and Al-Ti semi-infinite targets were impacted by high-speed projectiles at velocities of 0.8, 1.0, 1.2 and 1.5 km/s, respectively. It is found that the Al-Sc targets demonstrate more excellent ability to resist high-speed impact. It is concluded that different microstructures of Al-Sc and Al-Ti alloys, including different grain sizes and secondary particles precipitated in the matrix, result in their greatly different capabilities of resisting impact. Furthermore, the effect of the size range ofnanoscale A13Sc precipitate in A1-Sc alloy on the resistance of high-speed impact was investigated. In addition, computer simulations and validation of these simulations were developed which fairly accurately represented residual crater shapes/geometries. Validated computer simulations allowed representative extrapolations of impact craters well beyond the laboratory where melt and solidification occurred at the crater wall, especially for hypervelocity impact (〉5 km/s).
基金Project(41630642)supported by the Key Project of National Natural Science Foundation of ChinaProject(51974360)supported by the National Natural Science Foundation of ChinaProject(2018JJ3656)supported by the Natural Science Foundation of Hunan Province,China。
文摘In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step for the dynamic response simulation of rock mass in a high in-situ stress field.In this paper,stress initialization methods,including their principles and operating procedures for reproducing steady in-situ stress state in LS-DYNA,are first introduced.Then the most popular four methods,i.e.,explicit dynamic relaxation(DR)method,implicit-explicit sequence method,Dynain file method and quasi-static method,are exemplified through a case analysis by using the RHT and plastic hardening rock material models to simulate rock blasting under in-situ stress condition.Based on the simulations,it is concluded that the stress initialization results obtained by implicit-explicit sequence method and dynain file method are closely related to the rock material model,and the explicit DR method has an obvious advantage in solution time when compared to other methods.Besides that,it is recommended to adopt two separate analyses for the whole numerical simulation of rock mass under the combined action of in-situ stress and dynamic disturbance.
基金the National Key Basic Research Support Foundation (NKBRSF) of China (No. G1999011803),the National Natural Science Foundation of China (Nos. 40371058 and 40471018), the Jiangsu Provincial Society Deve-lopment Program of China (No. BS2003005), and the Institute of Geography and Limnology, Chinese Academy of Sciences(No. S250020).
文摘A laboratory salt-water dynamics experiment using unsaturated soils in packed silt loam and clay soil columns withdifferent soil texture profiles and groundwater levels under crops were conducted to study the changes of salt-waterdynamics induced by water uptake of crops and to propose the theoretical basis for the regulation and control of salt-water dynamics as well as to predict salinity levels. The HYDRUS 1D model was applied to simulate the one-dimensionalmovement of water and salt transport in the soil columns. The results showed that the salts mainly accumulated in theplow layer in the soil columns under crops. Soil water and salt both moved towards the plow layer due to soil waterabsorption by the crop root system. The salt contents in the column with lower groundwater were mostly greater thanthose with high groundwater. The water contents in the soil columns increased from top to the bottom due to plant rootwater uptake. The changes in groundwater level had little influence on water content of the root zone in the soil columnswith crop planting. Comparison between the simulated and the determined values showed that model simulation resultswere ideal, so it is practicable to do numerical simulation of soil salt and water transport by the HYDRUS 1D model.Furthermore, if the actual movement of salt and water in fields is to be described in detail, much work needs to be done.The most important thing is to refine the parameters and select precise boundary conditions.
基金National Natural Science Foundation of China under Grant No. 41372356the College Cultivation Project of the National Natural Science Foundation of China under Grant No. 2018PY30+1 种基金the Basic Research and Frontier Exploration Project of Chongqing,China under Grant No. cstc2018jcyj A1597the Graduate Scientific Research and Innovation Foundation of Chongqing,China under Grant No. CYS18026。
文摘Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability under purely microseisms and the influence of five factors, including seismic amplitude, slope height, slope angle, strata inclination and strata thickness, were considered. The experimental results show that the natural frequency of the slope decreases and damping ratio increases as the earthquake loading times increase. The dynamic strength reduction method is adopted for the stability evaluation of the bedding rock slope in numerical simulation, and the slope stability decreases with the increase of seismic amplitude, increase of slope height, reduction of strata thickness and increase of slope angle. The failure mode of a mid-dip bedding rock slope in the shaking table test is integral slipping along the bedding surface with dipping tensile cracks at the slope rear edge going through the bedding surfaces. In the numerical simulation, the long-term stability of a mid-dip bedding slope is worst under frequent microseisms and the slope is at risk of integral sliding instability, whereas the slope rock mass is more broken than shown in the shaking table test. The research results are of practical significance to better understand the formation mechanism of reservoir landslides and prevent future landslide disasters.
文摘In recent twenty years, much numerical simulation work has been done on the evolution of Qinghai-Xizang (Tibetan) plateau. In this paper some principal numerical models and results are reviewed and analyzed. The earlier plane stress or plane strain model has much discrepancy with the actual deformation of Qinghai-Xizang plateau, such as the thickening of Tibetan crust and the lateral extrusion of Tibet along strike-slip faults. The thin viscous sheet model and the thin-plate model may simulate the change of the crustal thickness and the deformation pro-duced by gravitational force. It is suitable for studying the large-scale and long-time deformation. The influence of faults on the deformation of Tibetan plateau should be further studied.
基金This study was supported by the Major State Basi(No.G1999043808) Youth Fund of the National 863 Project(No.G2002AA639350) and the Scientific Foundation of the Chinese
文摘An MOM2 based 3-dimentional prognostic baroclinic Z-ordinate model was established to study the circulation in eastern China seas, considering the topography, inflow and outflow on the open boundary, wind stress, temperature and salinity exchange on the sea surface. The results were consistent with observation and showed that the Kuroshio intrudes in large scale into the East China Sea continental shelf East China, during which its water is exchanged ceaselessly with outer sea water along Ryukyu Island. The Tsushima Warm Current is derived from several sources, a branch of the Kuroshio, part of the Taiwan Warm Current, and Yellow Sea mixed water coming from the west of Cheju Island. The water from the west of Cheju Island contributes ap-proximately 13% of the Isushima Warm Current total transport through the Korea Strait. The circulation in the Bohai Sea and Yellow Sea is basically cyclonic circulation, and is comprised of coastal currents and the Yellow Sea Warm Current. Besides simulation of the real circulation, numerical experiments were conducted to study the dynamic mechanism. The numerical experiments indicated that wind directly drives the East China Sea and Yellow Sea Coastal Currents, and strengthens the Korea Coastal Current and Yellow Sea Warm Current. In the no wind case, the kinetic energy of the coastal current area and main YSWC area is only 1% of that of the wind case. Numerical experiments also showed that the Tsushima Warm Current is of great importance to the formation of the Korea Coastal Current and Yellow Sea Warm Current.
文摘The mechanism and the course of two_dimensional nonlinear dynamic system of interspecific interaction were dealt with systematically. By extending the Lotka_Volterra model from the viewpoint of biomechanics, it developed new models of two_dimensional nonlinear autonomous and nonautonomous dynamic systems, with its equilibrium point's stability and the existence and stability of its periodical solutions analyzed, and did numerical simulation experiments on its dynamics course. The results show that efficiency of interaction between two populations, time_varying effort, and change direction of action coefficient and reaction coefficient have important influences on the stability of dynamic system, that too large or too small interspecific interaction efficiency and contrary change direction of action coefficient and reaction coefficient may result in the nonstability of the system, and thus it is difficult for two populations to coexist, and that time_varying active force contributes to system stability.
文摘According to the biomechanic theory and method, the dynamic mechanism of crop growth under the external force action of multi_environment factors (light, temperature,soil and nutrients etc.) was comprehensively explored.Continuous_time Markov(CTM) approach was adopted to build the dynamic model of the crop growth system and the simulated numerical method. The growth rate responses to the variation of the external force and the change of biomass saturation value were studied. The crop grew in the semiarid area was taken as an example to carry out the numerical simulation analysis, therefore the results provide the quantity basis for the field management. Comparing the dynamic model with the other plant growth model, the superiority of the former is that it displays multi_dimension of resource utilization by means of combining macroscopic with microcosmic and reveals the process of resource transition. The simulation method of crop growth system is advanced and manipulated. A real simulation result is well identical with field observational results.
基金financial supports for this research project by the National Natural Science Foundation of China(No.41602308)supported by Zhejiang Provincial Natural Science Foundation of China under Grant No.LY20E080005.
文摘To study the dynamic mechanical properties of tuff under different environmental conditions,the tuff from an ancient quarry in Shepan Island was prepared.The impact damage to the rock was tested using a triaxial dynamic impact mechanical testing system(TDIMTS)with different ground stresses,temperatures,and groundwater pressures.The time-strain relationship,dynamic stress-strain relationship,energy dissipation law,energy-peak strain relationship,and the impact damage pattern of the tuff specimens under impact air pressures were investigated.The TDIMTS experiment on ancient underground rock mass under impact loading was also simulated using the finite element analysis software LS-DYNA based on the Holmquist-Johnson-Cook(HJC)material model.The dynamic failure process,failure pattern and peak stress of tuff specimen were calculated.The simulation results obtained using the above methods were in good agreement with the experimental results.The results of the dynamic experiment show that with the same local stress,groundwater pressure,and temperature,the damage to the tuff specimens caused by blasting and quarrying disturbances gradually increases as the impact pressure increases.Under the same local stress,groundwater pressure,and temperature,the energy required to rupture the tuffs in ancient underground caverns is relatively small if the impact pressure is low accordingly,but as the impact pressure increases,the damage to the tuff caused by quarrying disturbance gradually increases.The damage gradually increases and the degree of damage to the tuff and the strain energy exhibit asymptotic growth when the tuff specimens are subjected to the greater strain energy,increasing the degree of rupturing of the tuff.In addition,the average crushing size decreases with increasing strain energy.By comparing the simulation results with the experimental results,it was found that the HJC model reflected the dynamic impact performance of tuff specimen,and the simulation results showed an evident strain rate effect.These results of this study can offer some guidance and theoretical support for the stability evaluation,protection,and safe operation of the ancient underground caverns in future.
基金This research was funded by the Fellowship of the China Postdoctoral Science Foundation(2021M703466)the Basic Research Innovation Group Project of Gansu Province,China(21JR7RA347)the Natural Science Foundation of Gansu Province,China(20JR10RA231).
文摘Sand fences made of punched steel plate(PSP)have recently been applied to control wind-blown sand in desertified and Gobi areas due to their strong wind resistance and convenient in situ construction.However,few studies have assessed the protective effect of PSP sand fences,especially through field observations.This study analyzes the effects of double-row PSP sand fences on wind and sand resistance using field observations and a computational fluid dynamics(CFD)numerical simulation.The results of field observations showed that the average windproof efficiencies of the first-row and second-row sand fences were 79.8%and 70.8%,respectively.Moreover,the average windproof efficiencies of the numerical simulation behind the first-row and second-row sand fences were 89.8%and 81.1%,respectively.The sand-resistance efficiency of the double-row PSP sand fences was 65.4%.Sand deposition occurred close to the first-row sand fence;however,there was relatively little sand on the leeward side of the second-row sand fence.The length of sand accumulation near PSP sand fences obtained by numerical simulation was basically consistent with that through field observations,indicating that field observations combined with numerical simulation can provide insight into the complex wind-blown sand field over PSP sand fences.This study indicates that the protection efficiency of the double-row PSP sand fences is sufficient for effective control of sand hazards associated with extremely strong wind in the Gobi areas.The output of this work is expected to improve the future application of PSP sand fences.
文摘This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used in numerical study on internal combustion engine with vertical and inclined valves, and has higher calculation precision. A numerical simulation (on the intake process of a two-valve engine with a semi-sphere combustion chamber and a radial intake port) is provided for analysis of the velocity field and pressure field of different plane at different crank angles. The results revealed the formation of the tumble motion, the evolution of flow field parameters and the variation of tumble ratios as important information for the design of engine in-take system.
文摘In recent twenty years, much numerical simulation work has been done on the evolution of Qinghai-Xizang (Tibetan) plateau. In this paper some principal numerical models and results are reviewed and analyzed. The earlier plane stress or plane strain model has much discrepancy with the actual deformation of Qinghai-Xizang plateau, such as the thickening of Tibetan crust and the lateral extrusion of Tibet along strike-slip faults. The thin viscous sheet model and the thin-plate model may simulate the change of the crustal thickness and the deformation pro-duced by gravitational force. It is suitable for studying the large-scale and long-time deformation. The influence of faults on the deformation of Tibetan plateau should be further studied.
文摘Three-dimensional transient numerical simulation of gas exchange process in a four-stroke motorcycle engine with a semi-spherical combustion chamber with two tilt valves was studied. Combination of the grid re-meshing method and the snapper technique made the valves move smoothly. The flow structure and pattern in a complete engine cycle were described in detail. Tumble ratios around the x-axis and y-axis were analyzed. Comparison of computed pressure with experimental pressure under motored condition revealed that the simulation had high calculation precision; CFD simulation can be regarded as an im-portant tool for resolving the complex aerodynamic behavior in motorcycle engines.
文摘Jet pulse assembly is one of the main components of jet hydraulic oscillator.The pressure wave characteristics produced by jet pulse assembly have an important influence on the performance of the tool.In this paper,the structure and working principle of jet pulse assembly are studied,the mechanical analysis model of piston rod is established,the dynamic resistance ratio formula of jet pulse assembly is deduced,and the numerical simulation test of 89-mm jet pulse assembly structure parameters is carried out.The results show that the piston rod downward stroke is driven by both the jet element driving force and the throttle plate load driving force,and can stably descend.The driving force of the piston rod upward stroke jet element is opposite to the load acting force of the throttle disc,and the jet driving force needs to be greater than the load resistance of the throttle disc to stably ascend.The dynamic resistance ratio formula is deduced.When the area of the end of the piston rod is reduced,the resistance of the throttle disc is reduced and the jet power is increased,thus solving the problem of insufficient power of the piston rod in the upstroke and ensuring the normal operation of the tool.Ten groups of numerical simulation tests were carried out,and it was found that the pressure amplitude and pressure drop of the tool decreased significantly with the increase of the tool size,and the error between the numerical simulation value and the theoretical calculation value was less than 9%,which verified the correctness of the theory.It is suggested to select tools on site according to the drilling construction situation to ensure the drilling effect.
文摘In this paper, the mathematical and physical model was developed based on thermodynamics and solidification theory before the eutectoid transformation of nodular graphite iron occurred. The Local Element Substitute and Magnification Method was brought forward and 3-dimensional numerical simulation program based on the model and the new assistant algorithm was developed and used to calculate the samples. Results of calculation have good agreement with experimental data. To display the microstructure formation during solidification of nodular graphite iron, a 2-dimensional numerical simulation program combined with the result of the 3-dimensional numerical simulation of experimental samples was compiled.
文摘This paper presents a numerical investigation of the axisymmetric, pressure driven motion of single file erythrocyte (i.e., red blood cell) suspensions flowing in capillaries of diameter 8-11 μm. Our study success-fully recreates several important in vivo hemodynamic and hemorheological properties of microscopic blood flow, such as parachute shape of the cells, blunt velocity profile, and the Fahraeus effect, and they have been shown to have strong dependence on cell deformability, hematocrit and vessel size.