In vehicle Ad-hoc netwok (VANET), traffic load is often unevenly distributed among access points (APs). Such load imbalance hampers the network from fully utilizing the network capacity. To alleviate such imbalanc...In vehicle Ad-hoc netwok (VANET), traffic load is often unevenly distributed among access points (APs). Such load imbalance hampers the network from fully utilizing the network capacity. To alleviate such imbalance, the paper introduces a novel pricing game model. The research scene is at the intersection when the traffic light is green. As vehicles are highly mobile and the network typology changes dynamically, the paper divides the green light time into equal slots and calculates APs' prices with the presented pricing game in each time slot. The whole process is a repeated game model. The final equilibrium solution set is APs' pricing strategy, and the paper claim that this equilibrium solution set can affect vehicles' selection and ensure APs' load-balancing. Simulation results based on a realistic vehicular traffic model demonstrate the effectiveness of the game method.展开更多
基金supported by the Open Research Fund from the Key Laboratory for Computer Network and Information Integration (Southeast University, Ministry of Education, China)the Fundamental Research Funds for the Central Universities+4 种基金National Key Technology R&D Program (2011BAK02B02-01),National Key Technology R&D Program of China (2011BAK02B02)the Hi-Tech Research and Development Program of China (2012AA111902)State Key Development Program for Basic Research of China (2011CB302902)the National Natural Science Foundation of China (61073180)National Science and Technology Major Project (2010ZX03006-002-03)
文摘In vehicle Ad-hoc netwok (VANET), traffic load is often unevenly distributed among access points (APs). Such load imbalance hampers the network from fully utilizing the network capacity. To alleviate such imbalance, the paper introduces a novel pricing game model. The research scene is at the intersection when the traffic light is green. As vehicles are highly mobile and the network typology changes dynamically, the paper divides the green light time into equal slots and calculates APs' prices with the presented pricing game in each time slot. The whole process is a repeated game model. The final equilibrium solution set is APs' pricing strategy, and the paper claim that this equilibrium solution set can affect vehicles' selection and ensure APs' load-balancing. Simulation results based on a realistic vehicular traffic model demonstrate the effectiveness of the game method.