期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Impact dynamics analysis of free-floating space manipulator capturing satellite on orbit and robust adaptive compound control algorithm design for suppressing motion 被引量:8
1
作者 董楸煌 陈力 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第4期413-422,共10页
The impact dynamics, impact effect, and post-impact unstable motion sup- pression of free-floating space manipulator capturing a satellite on orbit are analyzed. Firstly, the dynamics equation of free-floating space m... The impact dynamics, impact effect, and post-impact unstable motion sup- pression of free-floating space manipulator capturing a satellite on orbit are analyzed. Firstly, the dynamics equation of free-floating space manipulator is derived using the sec- ond Lagrangian equation. Combining the momentum conservation principle, the impact dynamics and effect between the space manipulator end-effector and satellite of the cap- ture process are analyzed with the momentum impulse method. Focusing on the unstable motion of space manipulator due to the above impact effect, a robust adaptive compound control algorithm is designed to suppress the above unstable motion. There is no need to control the free-floating base position to save the jet fuel. Finally, the simulation is proposed to show the impact effect and verify the validity of the control algorithm. 展开更多
关键词 free-floating space manipulator satellite capturing impact dynamics robust adaptive compound control
下载PDF
Advances in Active Suspension Systems for Road Vehicles
2
作者 Min Yu Simos AEvangelou Daniele Dini 《Engineering》 SCIE EI CAS CSCD 2024年第2期160-177,共18页
Active suspension systems(ASSs)have been proposed and developed for a few decades,and have now once again become a thriving topic in both academia and industry,due to the high demand for driving comfort and safety and... Active suspension systems(ASSs)have been proposed and developed for a few decades,and have now once again become a thriving topic in both academia and industry,due to the high demand for driving comfort and safety and the compatibility of ASSs with vehicle electrification and autonomy.Existing review papers on ASSs mainly cover dynamics modeling and robust control;however,the gap between academic research outcomes and industrial application requirements has not yet been bridged,hindering most ASS research knowledge from being transferred to vehicle companies.This paper comprehensively reviews advances in ASSs for road vehicles,with a focus on hardware structures and control strategies.In particular,state-of-the-art ASSs that have been recently adopted in production cars are discussed in detail,including the representative solutions of Mercedes active body control(ABC)and Audi predictive active suspension;novel concepts that could become alternative candidates are also introduced,including series active variable geometry suspension,and the active wheel-alignment system.ASSs with compact structure,small mass increment,low power consumption,high-frequency response,acceptable economic costs,and high reliability are more likely to be adopted by car manufacturers.In terms of control strategies,the development of future ASSs aims not only to stabilize the chassis attitude and attenuate the chassis vibration,but also to enable ASSs to cooperate with other modules(e.g.,steering and braking)and sensors(e.g.,cameras)within a car,and even with high-level decision-making(e.g.,reference driving speed)in the overall transportation system-strategies that will be compatible with the rapidly developing electric and autonomous vehicles. 展开更多
关键词 Active suspension Vehicle dynamics robust control Ride comfort Chassis attitude
下载PDF
ROBUST H∞ CONTROL FOR UNCERTAIN NONLINEAR SYSTEMS 被引量:2
3
作者 Weiping BI 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2007年第4期545-553,共9页
This paper studies the robust H∞ disturbance attenuation with internal stability for uncertain nonlinear control systems. By adding one power integrator technique, this paper designs a explicit smooth robust dynamic ... This paper studies the robust H∞ disturbance attenuation with internal stability for uncertain nonlinear control systems. By adding one power integrator technique, this paper designs a explicit smooth robust dynamic feedback law while rejecting the disturbance to any specified degree of accuracy. Further, the example and simulation results show the effectiveness of the proposed schemes. 展开更多
关键词 Internal stability robust dynamic feedback specified degree.
原文传递
Super twisting controller for on-orbit servicing to non-cooperative target 被引量:9
4
作者 Chen Binglong Geng Yunhai 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第1期285-293,共9页
A relative position and attitude coupled controller is proposed for rendezvous and docking between two docking ports located in different spacecraft. It is concerned with servicing to a tumbling non-cooperative target... A relative position and attitude coupled controller is proposed for rendezvous and docking between two docking ports located in different spacecraft. It is concerned with servicing to a tumbling non-cooperative target spacecraft in arbitrary orbit subjected to external disturbances.By considering both kinematic and dynamical coupled effects of relative rotation on relative translation, a coupled dynamic model is established to represent the relative motion of docking port on target spacecraft with respect to another on the service spacecraft. The spacecraft control is based on the second order sliding mode algorithm of super twisting(ST). It is schemed to manipulate the relative position and attitude synchronously. A formal proof of the finite time convergence property of the closed-loop system is derived theoretically by the second method of Lyapunov. Numerical simulations with the designed ST controller are presented to validate the analytic analysis by contrast with the twisting control algorithm. Simulation results demonstrate that the proposed relative position and attitude integrated controller is characterized by high precision, strong robustness and high reliability. 展开更多
关键词 spacecraft orbit cooperative attitude robustness kinematic sliding dynamical rotation concerned
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部