Microstructural evolution and dynamic recrystallization(DRX)mechanisms of a Ti-48Al-2Cr-2Nb(at.%)alloy prepared by selective electron beam melting(SEBM)during hot deformation at 1150℃and 0.1 s^(-1)were investigated b...Microstructural evolution and dynamic recrystallization(DRX)mechanisms of a Ti-48Al-2Cr-2Nb(at.%)alloy prepared by selective electron beam melting(SEBM)during hot deformation at 1150℃and 0.1 s^(-1)were investigated by hot compression tests,optical microscope(OM),scanning electron microscope(SEM),electron back-scattered diffraction(EBSD)and transmission electron microscope(TEM).The results show that the initial microstructure of the as-SEBMed alloy exhibits layers of coarseγgrains and fineγ+α_(2)+(α_(2)/γ)lamellar mixture grains alternately along the building direction.During the early stage of hot deformation,deformation twins tend to form within the coarse grains,facilitating subsequent deformation,and a small number of DRX grains appear in the fine-grained regions.With the increase of strain,extensive DRX grains are formed through different DRX mechanisms in both coarse and fine-grained regions,involving discontinuous dynamic recrystallization mechanism(DDRX)in the fine-grained regions and a coexistence of DDRX and continuous dynamic recrystallization(CDRX)in the coarsegrained regions.展开更多
An essential characteristic of the 4th Generation(4G) wireless networks is integrating various heterogeneous wireless access networks.This paper considers the network selection for both admission and handoff strategy ...An essential characteristic of the 4th Generation(4G) wireless networks is integrating various heterogeneous wireless access networks.This paper considers the network selection for both admission and handoff strategy problems in heterogeneous network of 3G/WLAN.A novel dynamic programming algorithm is proposed by taking heterogeneous network characteristics,user mobility and different service types into account.The specificity of our approach is that it puts the situations in a new model and makes decisions in stages of different states.Simulation results validate that the proposed scheme can obtain better new call blocking and handoff dropping probability performance than traditional schemes while ensuring quality-of-services(QoS) for both real-time and data connections.展开更多
The research on distributed MIMO relay system has been attracting much attention. In this paper, a decode-and-forward scheme distributed MIMO relay system is examined. For upper bound of channel capacity, the distance...The research on distributed MIMO relay system has been attracting much attention. In this paper, a decode-and-forward scheme distributed MIMO relay system is examined. For upper bound of channel capacity, the distance between transceivers is optimized when the propagation loss is brought close to actuality. Additionally, the number of relay is optimized whether total antenna element is fixed or not. When the number of relay is assumed to be infinite, the dynamic relay selection method based on the transmission rate is proposed. We represent that with the proposed method, the transmit power and the number of relays are saving.展开更多
Unmanned aerial vehicles(UAVs) enable flexible networking functions in emergency scenarios.However,due to the movement characteristic of ground users(GUs),it is challenging to capture the interactions among GUs.Thus,w...Unmanned aerial vehicles(UAVs) enable flexible networking functions in emergency scenarios.However,due to the movement characteristic of ground users(GUs),it is challenging to capture the interactions among GUs.Thus,we propose a learningbased dynamic connectivity maintenance architecture to reduce the delay for the UAV-assisted device-todevice(D2D) multicast communication.In this paper,each UAV transmits information to a selected GU,and then other GUs receive the information in a multi-hop manner.To minimize the total delay while ensuring that all GUs receive the information,we decouple it into three subproblems according to the time division on the topology:For the cluster-head selection,we adopt the Whale Optimization Algorithm(WOA) to imitate the hunting behavior of whales by abstracting the UAVs and cluster-heads into whales and preys,respectively;For the D2D multi-hop link establishment,we make the best of social relationships between GUs,and propose a node mapping algorithm based on the balanced spanning tree(BST) with reconfiguration to minimize the number of hops;For the dynamic connectivity maintenance,Restricted Q-learning(RQL) is utilized to learn the optimal multicast timeslot.Finally,the simulation results show that our proposed algorithms perfor better than other benchmark algorithms in the dynamic scenario.展开更多
The mobility of relay has great influence on the performance of a cooperative relay system.This paper proposes a dynamic selection scheme under the amplify-and-forward communication mode in high mobility environment,b...The mobility of relay has great influence on the performance of a cooperative relay system.This paper proposes a dynamic selection scheme under the amplify-and-forward communication mode in high mobility environment,based on the estimation of channels and the power allocation for each relay node by comparing it with the pre-set threshold.This scheme is used to choose the cooperative relay dynamically for a multiple relay scenario.Simulation results show that this proposed relay selection scheme decreases the outage probability effectively,maintains system capacity well,and improves the performance of the relay system.展开更多
Dynamic capacity increase in high voltage electric power transmission line is currently the most economical method for solving electric power transmission bottleneck nowadays. DS18B20 temperature sensor is applied to ...Dynamic capacity increase in high voltage electric power transmission line is currently the most economical method for solving electric power transmission bottleneck nowadays. DS18B20 temperature sensor is applied to the dynamic capacity increase of high voltage transmission lines to measure the conductor temperature and ambient temperature. The paper is focused on the experiment of DS18B20 both in the laboratory and outside. From the result of the lab temperature measurement data analysis, using 4 DS18B20’s is the most suitable plan, considering both accuracy and economical efficiency. In the experiment outside, we get four groups of conductor (uncharged) temperature and four groups of ambient temperature. The data proved that DS18B20 has good stability, and small measurement error. It is suitable for measuring the temperature of conductor and ambient in dynamic capacity increase, and helpful to improve the accuracy of the calculation of capacity increasing.展开更多
Surface oxygen vacancies(OVs) with abundant localized electrons on bismuth-oxygen based photocatalysts are proved to have the ability to capture and activate CO_(2).However,the surface OVs are easily filled with oxyge...Surface oxygen vacancies(OVs) with abundant localized electrons on bismuth-oxygen based photocatalysts are proved to have the ability to capture and activate CO_(2).However,the surface OVs are easily filled with oxygen-containing species and destroyed,losing their effects as active sites and hindering the subsequent CO_(2)photoreduction.For realistic and sustainable CO_(2)photoreduction,constructing sustainable and stable surface OVs as active sites on photocatalysts is essential.This work shows the synthesis of interlayer stretched Bi_(2)O_(2)CO_(3) ultrathin nanosheets with tensile stress,which are beneficial to continuously generating light-induced dynamic OVs.With sufficient active sites,excellent,stable,and selective photoreduction of CO_(2)to CO under simulated solar light is achieved.The light-induced OVs can reduce the energy barrier of rate-determining step,resulting in the 100% product selectivity.The results presented herein demonstrate the effect of dynamic OVs induced by interlayer tensile strain on catalysts for the enhanced selective CO_(2)photoreduction process.展开更多
In Wireless Sensor Networks (WSN), the lifetime of sensors is the crucial issue. Numerous schemes are proposed to augment the life time of sensors based on the wide range of parameters. In majority of the cases, the c...In Wireless Sensor Networks (WSN), the lifetime of sensors is the crucial issue. Numerous schemes are proposed to augment the life time of sensors based on the wide range of parameters. In majority of the cases, the center of attraction will be the nodes’ lifetime enhancement and routing. In the scenario of cluster based WSN, multi-hop mode of communication reduces the communication cast by increasing average delay and also increases the routing overhead. In this proposed scheme, two ideas are introduced to overcome the delay and routing overhead. To achieve the higher degree in the lifetime of the nodes, the residual energy (remaining energy) of the nodes for multi-hop node choice is taken into consideration first. Then the modification in the routing protocol is evolved (Multi-Hop Dynamic Path-Selection Algorithm—MHDP). A dynamic path updating is initiated in frequent interval based on nodes residual energy to avoid the data loss due to path extrication and also to avoid the early dying of nodes due to elevation of data forwarding. The proposed method improves network’s lifetime significantly. The diminution in the average delay and increment in the lifetime of network are also accomplished. The MHDP offers 50% delay lesser than clustering. The average residual energy is 20% higher than clustering and 10% higher than multi-hop clustering. The proposed method improves network lifetime by 40% than clustering and 30% than multi-hop clustering which is considerably much better than the preceding methods.展开更多
The polymorph selection during rapid solidification of zinc melt was investigated by molecular dynamics simulation. Several methods including g(r), energy, CNS, basic cluster and visualization were used to analyze t...The polymorph selection during rapid solidification of zinc melt was investigated by molecular dynamics simulation. Several methods including g(r), energy, CNS, basic cluster and visualization were used to analyze the results. The results reveal that the cooling rate has no observable effect on the microstructure as TTc(Tc is the onset temperature of crystallization); and at the first stage of crystallization, although microstructures are different, the morphologies of nucleus are similar, which are composed of HCP and FCC layers; the polymorph selection of cooling rate finally takes place at the second stage of crystallization: at a high cooling rate, the rapid increase of FCC atoms leads to a FCC crystal mixed with less HCP structures; while at a low cooling rate, HCP atoms grow at the expense of FCC atoms, resulting in an almost perfect HCP phase. The results reveal that the cooling rate is one of the important factors for polymorph selection.展开更多
The relationship between the site selection of a hilly terrain and the natural ventilation of the Dangdamen building complex,which is a traditional folk house,is revealed by a computational fluid dynamics(CFD)simula...The relationship between the site selection of a hilly terrain and the natural ventilation of the Dangdamen building complex,which is a traditional folk house,is revealed by a computational fluid dynamics(CFD)simulation.The wind press and speed distributions around the building in four cases with different weather conditions and topographies are simulated.The simulation results show that a hill can reduce the absolute values of the wind pressure at the windward and leeward sides of the building.The encouraging effect of the patio on the natural ventilation in a terrain with a hill is greater than that without a hill.The same situation occurs when comparing the patio effects between summer and winter.The wind speed around the building can be reduced by the hill as it is an obstacle and the degrees of the influence of the hill in summer and in winter are quite different because of different wind directions.The analysis results show that this kind of site selection,with the hill to the north,is a suitable way to settle the conflict of the natural ventilation requirements in summer and in winter under subtropical climate conditions,especially in houses with patios.展开更多
基金the financial supports from the Shaanxi Province Key Research and Development Projects,China(No.2023KXJ-071)the National Natural Science Foundation of China(Nos.52274402,52174381)。
文摘Microstructural evolution and dynamic recrystallization(DRX)mechanisms of a Ti-48Al-2Cr-2Nb(at.%)alloy prepared by selective electron beam melting(SEBM)during hot deformation at 1150℃and 0.1 s^(-1)were investigated by hot compression tests,optical microscope(OM),scanning electron microscope(SEM),electron back-scattered diffraction(EBSD)and transmission electron microscope(TEM).The results show that the initial microstructure of the as-SEBMed alloy exhibits layers of coarseγgrains and fineγ+α_(2)+(α_(2)/γ)lamellar mixture grains alternately along the building direction.During the early stage of hot deformation,deformation twins tend to form within the coarse grains,facilitating subsequent deformation,and a small number of DRX grains appear in the fine-grained regions.With the increase of strain,extensive DRX grains are formed through different DRX mechanisms in both coarse and fine-grained regions,involving discontinuous dynamic recrystallization mechanism(DDRX)in the fine-grained regions and a coexistence of DDRX and continuous dynamic recrystallization(CDRX)in the coarsegrained regions.
基金Supported by the National Natural Science Foundation and Civil Aviation Administration of China(No.61071105)
文摘An essential characteristic of the 4th Generation(4G) wireless networks is integrating various heterogeneous wireless access networks.This paper considers the network selection for both admission and handoff strategy problems in heterogeneous network of 3G/WLAN.A novel dynamic programming algorithm is proposed by taking heterogeneous network characteristics,user mobility and different service types into account.The specificity of our approach is that it puts the situations in a new model and makes decisions in stages of different states.Simulation results validate that the proposed scheme can obtain better new call blocking and handoff dropping probability performance than traditional schemes while ensuring quality-of-services(QoS) for both real-time and data connections.
文摘The research on distributed MIMO relay system has been attracting much attention. In this paper, a decode-and-forward scheme distributed MIMO relay system is examined. For upper bound of channel capacity, the distance between transceivers is optimized when the propagation loss is brought close to actuality. Additionally, the number of relay is optimized whether total antenna element is fixed or not. When the number of relay is assumed to be infinite, the dynamic relay selection method based on the transmission rate is proposed. We represent that with the proposed method, the transmit power and the number of relays are saving.
基金supported by the Future Scientists Program of China University of Mining and Technology(2020WLKXJ030)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX201993).
文摘Unmanned aerial vehicles(UAVs) enable flexible networking functions in emergency scenarios.However,due to the movement characteristic of ground users(GUs),it is challenging to capture the interactions among GUs.Thus,we propose a learningbased dynamic connectivity maintenance architecture to reduce the delay for the UAV-assisted device-todevice(D2D) multicast communication.In this paper,each UAV transmits information to a selected GU,and then other GUs receive the information in a multi-hop manner.To minimize the total delay while ensuring that all GUs receive the information,we decouple it into three subproblems according to the time division on the topology:For the cluster-head selection,we adopt the Whale Optimization Algorithm(WOA) to imitate the hunting behavior of whales by abstracting the UAVs and cluster-heads into whales and preys,respectively;For the D2D multi-hop link establishment,we make the best of social relationships between GUs,and propose a node mapping algorithm based on the balanced spanning tree(BST) with reconfiguration to minimize the number of hops;For the dynamic connectivity maintenance,Restricted Q-learning(RQL) is utilized to learn the optimal multicast timeslot.Finally,the simulation results show that our proposed algorithms perfor better than other benchmark algorithms in the dynamic scenario.
基金Supported by the National Natural Science Foundation of China(No.61172073)the State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University(No.RCS2011ZT003)+2 种基金the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University(No.2012D19)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(No.2013JBZ001)the Program for New Century Excellent Talents in University of Ministry of Education of China(No.NCET-12-0766)
文摘The mobility of relay has great influence on the performance of a cooperative relay system.This paper proposes a dynamic selection scheme under the amplify-and-forward communication mode in high mobility environment,based on the estimation of channels and the power allocation for each relay node by comparing it with the pre-set threshold.This scheme is used to choose the cooperative relay dynamically for a multiple relay scenario.Simulation results show that this proposed relay selection scheme decreases the outage probability effectively,maintains system capacity well,and improves the performance of the relay system.
文摘Dynamic capacity increase in high voltage electric power transmission line is currently the most economical method for solving electric power transmission bottleneck nowadays. DS18B20 temperature sensor is applied to the dynamic capacity increase of high voltage transmission lines to measure the conductor temperature and ambient temperature. The paper is focused on the experiment of DS18B20 both in the laboratory and outside. From the result of the lab temperature measurement data analysis, using 4 DS18B20’s is the most suitable plan, considering both accuracy and economical efficiency. In the experiment outside, we get four groups of conductor (uncharged) temperature and four groups of ambient temperature. The data proved that DS18B20 has good stability, and small measurement error. It is suitable for measuring the temperature of conductor and ambient in dynamic capacity increase, and helpful to improve the accuracy of the calculation of capacity increasing.
基金supported by the National Natural Science Foundation of China (52200123, 22225606, 22261142663)。
文摘Surface oxygen vacancies(OVs) with abundant localized electrons on bismuth-oxygen based photocatalysts are proved to have the ability to capture and activate CO_(2).However,the surface OVs are easily filled with oxygen-containing species and destroyed,losing their effects as active sites and hindering the subsequent CO_(2)photoreduction.For realistic and sustainable CO_(2)photoreduction,constructing sustainable and stable surface OVs as active sites on photocatalysts is essential.This work shows the synthesis of interlayer stretched Bi_(2)O_(2)CO_(3) ultrathin nanosheets with tensile stress,which are beneficial to continuously generating light-induced dynamic OVs.With sufficient active sites,excellent,stable,and selective photoreduction of CO_(2)to CO under simulated solar light is achieved.The light-induced OVs can reduce the energy barrier of rate-determining step,resulting in the 100% product selectivity.The results presented herein demonstrate the effect of dynamic OVs induced by interlayer tensile strain on catalysts for the enhanced selective CO_(2)photoreduction process.
文摘In Wireless Sensor Networks (WSN), the lifetime of sensors is the crucial issue. Numerous schemes are proposed to augment the life time of sensors based on the wide range of parameters. In majority of the cases, the center of attraction will be the nodes’ lifetime enhancement and routing. In the scenario of cluster based WSN, multi-hop mode of communication reduces the communication cast by increasing average delay and also increases the routing overhead. In this proposed scheme, two ideas are introduced to overcome the delay and routing overhead. To achieve the higher degree in the lifetime of the nodes, the residual energy (remaining energy) of the nodes for multi-hop node choice is taken into consideration first. Then the modification in the routing protocol is evolved (Multi-Hop Dynamic Path-Selection Algorithm—MHDP). A dynamic path updating is initiated in frequent interval based on nodes residual energy to avoid the data loss due to path extrication and also to avoid the early dying of nodes due to elevation of data forwarding. The proposed method improves network’s lifetime significantly. The diminution in the average delay and increment in the lifetime of network are also accomplished. The MHDP offers 50% delay lesser than clustering. The average residual energy is 20% higher than clustering and 10% higher than multi-hop clustering. The proposed method improves network lifetime by 40% than clustering and 30% than multi-hop clustering which is considerably much better than the preceding methods.
基金Project(20151BAB216004)supported by the Jiangxi Provincial Natural Science FoundationChina+2 种基金Projects(ZD202002YB201306)supported by the Fund for Basic Scientific Research of Gannan Medical UniversityChina
文摘The polymorph selection during rapid solidification of zinc melt was investigated by molecular dynamics simulation. Several methods including g(r), energy, CNS, basic cluster and visualization were used to analyze the results. The results reveal that the cooling rate has no observable effect on the microstructure as TTc(Tc is the onset temperature of crystallization); and at the first stage of crystallization, although microstructures are different, the morphologies of nucleus are similar, which are composed of HCP and FCC layers; the polymorph selection of cooling rate finally takes place at the second stage of crystallization: at a high cooling rate, the rapid increase of FCC atoms leads to a FCC crystal mixed with less HCP structures; while at a low cooling rate, HCP atoms grow at the expense of FCC atoms, resulting in an almost perfect HCP phase. The results reveal that the cooling rate is one of the important factors for polymorph selection.
基金The National Key Technology R&D Program of China during the11th Five-Year Plan Period(No.2006BAJ04A13,2006BAJ04B04,2006BAJ02A08,2006BAJ02A05,2006BAJ04A05)the Excellent Youth Teachers Program of Ministry of Education of China(No.2007-209).
文摘The relationship between the site selection of a hilly terrain and the natural ventilation of the Dangdamen building complex,which is a traditional folk house,is revealed by a computational fluid dynamics(CFD)simulation.The wind press and speed distributions around the building in four cases with different weather conditions and topographies are simulated.The simulation results show that a hill can reduce the absolute values of the wind pressure at the windward and leeward sides of the building.The encouraging effect of the patio on the natural ventilation in a terrain with a hill is greater than that without a hill.The same situation occurs when comparing the patio effects between summer and winter.The wind speed around the building can be reduced by the hill as it is an obstacle and the degrees of the influence of the hill in summer and in winter are quite different because of different wind directions.The analysis results show that this kind of site selection,with the hill to the north,is a suitable way to settle the conflict of the natural ventilation requirements in summer and in winter under subtropical climate conditions,especially in houses with patios.