This paper presents results from a series of stress-controlled undrained cyclic triaxial tests on the undisturbed marine silty clay,silt,and fine sand soils obtained from the Bohai Sea,China.Emphasis is placed on the ...This paper presents results from a series of stress-controlled undrained cyclic triaxial tests on the undisturbed marine silty clay,silt,and fine sand soils obtained from the Bohai Sea,China.Emphasis is placed on the major factors for predominating the dynamic shear modulus(G)and damping ratio(λ)in the shear strain amplitude(γ_(a))from 10^(-5) to 10^(-2),involving depth,sedimentary facies types,and water content of marine soils.The empirical equations of the small-strain shear modulus(G_(max))and damping ratio(λ_(min))using a single-variable of depth H are established for the three marine soils.A remarkable finding is that the curves of shear modulus reduction(G/G_(max))and the damping ratio(λ)with increasing γ_(a) of the three marine soils can be simply determined through a set of explicit expressions with the two variables of depth H and water content W.This finding is validated by independent experimental data from the literature.At the similar depths,the G value of the marine soils of terrestrial facies is the largest,followed b_(y) the neritic facies,and the G value of the marine soils of abyssal facies is the smallest.The sedimentary facies types of the marine soils have slight effect on theλvalue.Another significant finding is that the shear modulus reduction curves plotted against the γ_(a) of the three marine soils at the similar depths are significantly below those of the corresponding terrigenous soils,while the damping curves plotted against γ_(a) are just the opposite.The results presented in this paper serve as a worthful reference for the evaluation of seabed seismic site effects in the Bohai Sea due to lack of experimental data.展开更多
The dynamic shear modulus for three types of undisturbed soil under different consolidation ratios is presented by using the resonant column test method. Its effects on surface ground motion is illustrated by calculat...The dynamic shear modulus for three types of undisturbed soil under different consolidation ratios is presented by using the resonant column test method. Its effects on surface ground motion is illustrated by calculation. The test results indicate that the power function is a suitable form for describing the relationship between the ratio of the maximum dynamic shear modulus due to anisotropic and isotropic consolidations and the increment of the consolidation ratio. When compared to sand, the increment of the maximum dynamic shear modulus for undisturbed soil due to anisotropic consolidation is much larger. Using a one-dimensional equivalent linearization method, the earthquake influence factor and the characteristic period of the surface acceleration are calculated for two soil layers subjected to several typical earthquake waves. The calculated results show that the difference in nonlinear properties due to different consolidation ratios is generally not very notable, but the degree of its influence on the surface acceleration spectrum is remarkable for the occurrence of strong earthquakes. When compared to isotropic consolidation, the consideration of actual anisotropic consolidation causes the characteristic period to decrease and the earthquake influence factor to increase.展开更多
Recycled waste tires when mixed with soil can play an important role as lightweight materials in retaining walls and embankments, machine foundations and railroad track beds in seismic zones. Having high damping chara...Recycled waste tires when mixed with soil can play an important role as lightweight materials in retaining walls and embankments, machine foundations and railroad track beds in seismic zones. Having high damping characteristic, rubbers can be used as either soil alternative or mixed with soil to reduce vibration when seismic loads are of great concern. Therefore, the objective of this work was to evaluate the dynamic properties of such mixtures prior to practical applications. To this reason, torsional resonant column and dynamic triaxial experiments were carried out and the effect of the important parameters like rubber content and ratio of mean grain size of rubber solids versus soil solids(D50,r/D50,s) on dynamic response of mixtures in a range of low to high shearing strain amplitude from about 4×10-4% to 2.7% were investigated. Considering engineering applications, specimens were prepared almost at the maximum dry density and optimum moisture content to model a mixture layer above the ground water table and in low precipitation region. The results show that tire inclusion significantly reduces the shear modulus and increases the damping ratio of the mixtures. Also decrease in D50,r/D50,s causes the mixture to exhibit more rubber-like behavior. Finally, normalized shear modulus versus shearing strain amplitude curve was proposed for engineering practice.展开更多
Under repeated freezing and thawing in deep seasonal frozen regions, the stability and strength of the soil are imposed in the form of large uneven settlement, instability and strength reduction, which affect the norm...Under repeated freezing and thawing in deep seasonal frozen regions, the stability and strength of the soil are imposed in the form of large uneven settlement, instability and strength reduction, which affect the normal operation of railway lines. This study is to obtain the influencing rules of freeze-thaw on the dynamic properties (dynamic strain, confining pressure and compactness) of silty sand. Based on an amount of inner tests, the dynamic modulus and damping ratio properties of silty soil subjected to repeated freeze-thaw cycles were deeply researched and analyzed. The results are as follows: At the same dynamic strain, the relationship of dynamic stress and freeze-thaw cycles presents negative cor- relation, and the relationship of dynamic stress, confining pressure and compactness present positive correlation. The dynamic modulus double decreases while the damping ratio double increases with incremental increase in dynamic strain. The dynamic modulus sharply decreases while the damping ratio increases with incremental increase in freeze-thaw cycles, and then the changes level off after six freeze-thaw cycles. The dynamic modulus increases while the damping ratio decreases as the confining pressure and compactness increase at the same strain level.展开更多
The dynamic shear modulus (DSM) is the most basic soil parameter in earthquake or other dynamic loading conditions and can be obtained through testing in the field or in the laboratory. The effect of consolidation rat...The dynamic shear modulus (DSM) is the most basic soil parameter in earthquake or other dynamic loading conditions and can be obtained through testing in the field or in the laboratory. The effect of consolidation ratios on the maximum DSM for two types of sand is investigated by using resonant column tests. And, an increment formula to obtain the maximum DSM for cases of consolidation ratio κc>1 is presented. The results indicate that the maximum DSM rises rapidly when κc is near 1 and then slows down, which means that the power function of the consolidation ratio increment κc-1 can be used to describe the variation of the maximum DSM due to κc>1. The results also indicate that the increase in the maximum DSM due to κc>1 is significantly larger than that predicted by Hardin and Black's formula.展开更多
The dynamic shear modulus ratio and damping ratio of sandy gravel are important parameters for the seismic response analysis of valley geomorphic sites,which have an important impact on the determination of design gro...The dynamic shear modulus ratio and damping ratio of sandy gravel are important parameters for the seismic response analysis of valley geomorphic sites,which have an important impact on the determination of design ground motion parameters. In this paper,the dynamic triaxial test of sandy gravels has been performed based on the project of the Shangluo Seismic Microzonation. Combined with the other results of sandy gravel,the recommended results of slightly dense,medium dense and dense sandy gravel were obtained. By building the typical site model,the influence of the dynamic shear modulus ratio and the damping ratio uncertainty on the seismic response of the site is studied. The results show that the uncertainty of the average of the dynamic shear modulus ratio and the damping ratio ± 1 times the standard deviation has little effect on the peak acceleration of the sandy gravel site,and the rationality of the grouping and statistical results is explained. Under different probability levels,the change in the shear modulus ratio and damping ratio leads to a significant difference in the high frequency response spectrum.The response spectrum of 0. 04-0. 1s ranges from about 20%,but it has little effect on the long period spectrum of more than 1. 0s. The study of dynamic shear modulus ratio and damping ratio of sandy gravel has the ability to improve the reliability of the designing ground motion parameters.展开更多
In this paper, it is shown that, a road vehicle 2DOF air damped quartercar suspension system can conveniently be transformed into a 2DOF air damped vibrating system representing an air damped dynamic vibration absorbe...In this paper, it is shown that, a road vehicle 2DOF air damped quartercar suspension system can conveniently be transformed into a 2DOF air damped vibrating system representing an air damped dynamic vibration absorber (DVA) with an appropriate change in the ratio μ of the main mass and the absorber mass i.e. when mass ratio μ >> 1. Also the effect of variation of the mass ratio, air damping ratio and air spring rate ratio, on the motion transmissibility at the resonant frequency of the main mass of the DVA has been dis- cussed. It is shown that, as the air damping ratio in the absorber system increases, there is a substantial decrease in the motion transmissibility of the main mass system where the air damper has been modeled as a Maxwell type. Optimal value of the air damping ratio for the minimum motion transmissibility of the main mass of the system has been determined. An experimental setup has been designed and developed with a control system to vary air pressure in the damper in the absorber system. The motion transmissibility characteristics of the main mass system have been obtained, and the optimal value of the air damping ratio has been determined for minimum motion transmissibility of the main mass of the展开更多
<span style="font-family:Verdana;">In work reported here, the dynamic properties and low-velocity impact response of woven carbon/epoxy laminates incorporating a novel 3D interlaminar reinforcement con...<span style="font-family:Verdana;">In work reported here, the dynamic properties and low-velocity impact response of woven carbon/epoxy laminates incorporating a novel 3D interlaminar reinforcement concept with dense layers of Z-axis oriented milled carbon fiber Supercomposite</span><sup><span style="font-family:Verdana;">TM</span></sup><span style="font-family:Verdana;"> prepregs, are presented. Impulse-frequency response vibration technique is used for non-destructive evaluation of the dynamic flexural modulus (stiffness) and loss factor (intrinsic damping) of woven carbon/epoxy control and Supercomposite</span><sup><span style="font-family:Verdana;">TM</span></sup><span style="font-family:Verdana;"> laminates. Low-velocity punch-shear tests were performed on control and Supercomposite</span><sup><span style="font-family:Verdana;">TM</span></sup><span style="font-family:Verdana;"> laminates according to ASTM D3763 Standard using a drop-weight impact test system. Control panels had all layers of 3K plain woven carbon/epoxy prepregs, with a dense interlaminar reinforcement of milled carbon fibers in Z-</span><span style="font-family:;" "=""> </span><span><span style="font-family:Verdana;">direction used in designing the Supercomposite</span><sup><span style="font-family:Verdana;">TM</span></sup><span style="font-family:Verdana;"> laminate—both having same areal density. Impulse-frequency response vibration experiments show that with a 50% replacement of woven carbon fabric in control panel with milled carbon fibers in Z direction dynamic flexural modulus reduced 25%</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">30% (loss in stiffness) and damping increased by about the same 25%</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">30%. Low-velocity punch-shear tests demonstrated about</span><span style="font-family:;" "=""> </span><span><span style="font-family:Verdana;">25% reduction in energy absorption for Supercomposite</span><sup><span style="font-family:Verdana;">TM</span></sup><span style="font-family:Verdana;"> laminates with the replacement of 50% woven carbon fabric in control panel.</span></span>展开更多
The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite...The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite element simulations, the static deformations of different components, stress increments and distributions of the girder, as well as the vibration characteristics and damping ratio of the Hunan Road Bridge were analyzed, which is the widest self-anchored suspension bridge in China at present. The dynamic responses were calculated using the Newmark-β integration method assisted by the simulation models of bridge and vehicles, the influences on the dynamic impact coefficient(DIC) brought by the vehicle parameters, girder width, eccentricity travel and deck flatness were also researched. The spatial effect of the girder is obvious due to the extra width, which performs as the stress increments distribute unevenly along the transverse direction, and the girder deflections and stress increments of the upper plate change as a "V" and "M" shape respectively under the symmetrical vehicle loads affected by the shear lag effect, cross slope and local effect of the wheels, the maximum of stress increments are located in the junctions with the inner webs. The obvious girder torsional deformation and the apparent unevenness of the hanger forces between the two cable planes under the eccentric vehicle loads, together with the mode shapes such as the girder transverse bending and torsion which appear relatively earlier, all reflect the weakened torsional rigidity of the extra-wide girder. The transverse displacements of towers are more obvious than the longitudinal ones. As for the influences on the DIC, the static effect of the heavier vehicles plays a major role when pass through with a higher speed and the changes of vehicle suspension stiffness generate greater impacts than the suspension damp. The values of DIC in the vehicle-running side during the eccentric travel, affected by the restricts from the static effects of the eccentric moving trucks, are significantly smaller than the vehicle-free side, the increase in the road roughness is the most sensitive one among the above influential factors. The results could provide references for the design, static and dynamic response analysis of the similar extra-wide suspension bridges.展开更多
A thorough understanding on the mechanical properties of carbon nanotube (CNT) is essential in extending the advanced applications of CNT based systems. However, conducting experiments to estimate mechanical propert...A thorough understanding on the mechanical properties of carbon nanotube (CNT) is essential in extending the advanced applications of CNT based systems. However, conducting experiments to estimate mechanical properties at this scale is extremely challenging. Therefore, development of mechanistic models to estimate the mechanical properties of CNTs along with the integration of existing continuum mechanics concepts is critically important. This paper presents a comprehensive molecular dynamics simulation study on the size dependency and potential function influence of mechanical properties of CNT. Commonly used reactive bond order (REBO) and adaptive intermolecular reactive bond order (A1REBO) potential functions were considered in this regard. Young's modulus and shear modulus of CNTs are derived by integrating classical continuum mechanics concepts with molecular dynamics simulations. The results indicate that the potential function has a significant influence on the estimated mechanical properties of CNTs, and the influence of potential field is much higher when studying the torsional behaviour of CNTs than the tensile behaviour.展开更多
The dynamic characteristics of compacted loess are of great significance to the seismic construction of the Loess Plateau area in Northwest China,where earthquakes frequently occur.To study the change in the dynamic m...The dynamic characteristics of compacted loess are of great significance to the seismic construction of the Loess Plateau area in Northwest China,where earthquakes frequently occur.To study the change in the dynamic modulus of the foundation soil under the combined action of vertical and horizontal earthquakes,a hollow cy-lindrical torsion shear instrument capable of vibrating in four directions was used to perform two-way coupling of compression and torsion of Xi'an compacted loess under different dry density and deviator stress ratios.The results show that increasing the dry density can improve the initial dynamic compression modulus and initial dynamic shear modulus of compacted loess.With an increase in the deviator stress ratio,the initial dynamic compression modulus increases,to a certain extent,but the initial dynamic shear modulus decreases slightly.The dynamic modulus gradually decreases with the development of dynamic strain and tends to be stable,and the dynamic modulus that reaches the same strain increases with an increasing dry density.At the initial stage of dynamic loading,the attenuation of the dynamic shear modulus with the strain development is faster than that of the dynamic compression modulus.Compared with previous research results,it is determined that the dynamic modulus of loess under bidirectional dynamic loading is lower and the attenuation rate is faster than that under single-direction dynamic loading.The deviator stress ratio has a more obvious effect on the dynamic compression modulus.The increase in the deviator stress ratio can increase the dynamic compression modulus,to a certain extent.However,the deviator stress ratio has almost no effect on the dynamic shear modulus,and can therefore be ignored.展开更多
A methodology for achieving the maximum bulk or shear modulus in an elastic composite composed of two isotropic phases with distinct Poisson’s ratios is proposed.A topology optimization algorithm is developed which i...A methodology for achieving the maximum bulk or shear modulus in an elastic composite composed of two isotropic phases with distinct Poisson’s ratios is proposed.A topology optimization algorithm is developed which is capable of finding microstructures with extreme properties very close to theoretical upper bounds.The effective mechanical properties of the designed composite are determined by a numerical homogenization technique.The sensitivities with respect to design variables are derived by simultaneously interpolating Young’smodulus and Poisson’s ratio using different parameters.The so-called solid isotropicmaterial with penalizationmethod is developed to establish the optimization formulation.Maximum bulk or shearmodulus is considered as the objective function,and the volume fraction of constituent phases is taken as constraints.Themethod ofmoving asymptotes is applied to update the design variables.Several 3D numerical examples are presented to demonstrate the effectiveness of the proposed structural optimization method.The effects of key parameters such as Poisson’s ratios and volume fractions of constituent phase on the final designs are investigated.A series of novel microstructures are obtained fromthe proposed approach.It is found that the optimized bulk and shearmoduli of all the studied composites are very close to the Hashin-Shtrikman-Walpole bounds.展开更多
基金National Natural Science Foundation of China under Grant Nos.51978334 and 51978335。
文摘This paper presents results from a series of stress-controlled undrained cyclic triaxial tests on the undisturbed marine silty clay,silt,and fine sand soils obtained from the Bohai Sea,China.Emphasis is placed on the major factors for predominating the dynamic shear modulus(G)and damping ratio(λ)in the shear strain amplitude(γ_(a))from 10^(-5) to 10^(-2),involving depth,sedimentary facies types,and water content of marine soils.The empirical equations of the small-strain shear modulus(G_(max))and damping ratio(λ_(min))using a single-variable of depth H are established for the three marine soils.A remarkable finding is that the curves of shear modulus reduction(G/G_(max))and the damping ratio(λ)with increasing γ_(a) of the three marine soils can be simply determined through a set of explicit expressions with the two variables of depth H and water content W.This finding is validated by independent experimental data from the literature.At the similar depths,the G value of the marine soils of terrestrial facies is the largest,followed b_(y) the neritic facies,and the G value of the marine soils of abyssal facies is the smallest.The sedimentary facies types of the marine soils have slight effect on theλvalue.Another significant finding is that the shear modulus reduction curves plotted against the γ_(a) of the three marine soils at the similar depths are significantly below those of the corresponding terrigenous soils,while the damping curves plotted against γ_(a) are just the opposite.The results presented in this paper serve as a worthful reference for the evaluation of seabed seismic site effects in the Bohai Sea due to lack of experimental data.
基金National Natural Science Foundation of China under Grant No.51108163Natural Science Foundation of Heilongjiang Province under Grant No.E201104
文摘The dynamic shear modulus for three types of undisturbed soil under different consolidation ratios is presented by using the resonant column test method. Its effects on surface ground motion is illustrated by calculation. The test results indicate that the power function is a suitable form for describing the relationship between the ratio of the maximum dynamic shear modulus due to anisotropic and isotropic consolidations and the increment of the consolidation ratio. When compared to sand, the increment of the maximum dynamic shear modulus for undisturbed soil due to anisotropic consolidation is much larger. Using a one-dimensional equivalent linearization method, the earthquake influence factor and the characteristic period of the surface acceleration are calculated for two soil layers subjected to several typical earthquake waves. The calculated results show that the difference in nonlinear properties due to different consolidation ratios is generally not very notable, but the degree of its influence on the surface acceleration spectrum is remarkable for the occurrence of strong earthquakes. When compared to isotropic consolidation, the consideration of actual anisotropic consolidation causes the characteristic period to decrease and the earthquake influence factor to increase.
文摘Recycled waste tires when mixed with soil can play an important role as lightweight materials in retaining walls and embankments, machine foundations and railroad track beds in seismic zones. Having high damping characteristic, rubbers can be used as either soil alternative or mixed with soil to reduce vibration when seismic loads are of great concern. Therefore, the objective of this work was to evaluate the dynamic properties of such mixtures prior to practical applications. To this reason, torsional resonant column and dynamic triaxial experiments were carried out and the effect of the important parameters like rubber content and ratio of mean grain size of rubber solids versus soil solids(D50,r/D50,s) on dynamic response of mixtures in a range of low to high shearing strain amplitude from about 4×10-4% to 2.7% were investigated. Considering engineering applications, specimens were prepared almost at the maximum dry density and optimum moisture content to model a mixture layer above the ground water table and in low precipitation region. The results show that tire inclusion significantly reduces the shear modulus and increases the damping ratio of the mixtures. Also decrease in D50,r/D50,s causes the mixture to exhibit more rubber-like behavior. Finally, normalized shear modulus versus shearing strain amplitude curve was proposed for engineering practice.
基金funded by the National Key Basic Research Development Plan of China (Grant No. 2012CB026104)the National Natural Science Foundation (NSFC) of China (Grant Nos.51208320 and 51171281)
文摘Under repeated freezing and thawing in deep seasonal frozen regions, the stability and strength of the soil are imposed in the form of large uneven settlement, instability and strength reduction, which affect the normal operation of railway lines. This study is to obtain the influencing rules of freeze-thaw on the dynamic properties (dynamic strain, confining pressure and compactness) of silty sand. Based on an amount of inner tests, the dynamic modulus and damping ratio properties of silty soil subjected to repeated freeze-thaw cycles were deeply researched and analyzed. The results are as follows: At the same dynamic strain, the relationship of dynamic stress and freeze-thaw cycles presents negative cor- relation, and the relationship of dynamic stress, confining pressure and compactness present positive correlation. The dynamic modulus double decreases while the damping ratio double increases with incremental increase in dynamic strain. The dynamic modulus sharply decreases while the damping ratio increases with incremental increase in freeze-thaw cycles, and then the changes level off after six freeze-thaw cycles. The dynamic modulus increases while the damping ratio decreases as the confining pressure and compactness increase at the same strain level.
基金The Science and Technology Ministration of China and the Earthquake Science Foundation of China (Grand No. 102033)
文摘The dynamic shear modulus (DSM) is the most basic soil parameter in earthquake or other dynamic loading conditions and can be obtained through testing in the field or in the laboratory. The effect of consolidation ratios on the maximum DSM for two types of sand is investigated by using resonant column tests. And, an increment formula to obtain the maximum DSM for cases of consolidation ratio κc>1 is presented. The results indicate that the maximum DSM rises rapidly when κc is near 1 and then slows down, which means that the power function of the consolidation ratio increment κc-1 can be used to describe the variation of the maximum DSM due to κc>1. The results also indicate that the increase in the maximum DSM due to κc>1 is significantly larger than that predicted by Hardin and Black's formula.
基金sponsored by the Earthquake Disaster Prevention and ReductionProgram for the 12th “Five-year Plan” of Shaanxi Province(SCZC2012-TP-905/1)
文摘The dynamic shear modulus ratio and damping ratio of sandy gravel are important parameters for the seismic response analysis of valley geomorphic sites,which have an important impact on the determination of design ground motion parameters. In this paper,the dynamic triaxial test of sandy gravels has been performed based on the project of the Shangluo Seismic Microzonation. Combined with the other results of sandy gravel,the recommended results of slightly dense,medium dense and dense sandy gravel were obtained. By building the typical site model,the influence of the dynamic shear modulus ratio and the damping ratio uncertainty on the seismic response of the site is studied. The results show that the uncertainty of the average of the dynamic shear modulus ratio and the damping ratio ± 1 times the standard deviation has little effect on the peak acceleration of the sandy gravel site,and the rationality of the grouping and statistical results is explained. Under different probability levels,the change in the shear modulus ratio and damping ratio leads to a significant difference in the high frequency response spectrum.The response spectrum of 0. 04-0. 1s ranges from about 20%,but it has little effect on the long period spectrum of more than 1. 0s. The study of dynamic shear modulus ratio and damping ratio of sandy gravel has the ability to improve the reliability of the designing ground motion parameters.
文摘In this paper, it is shown that, a road vehicle 2DOF air damped quartercar suspension system can conveniently be transformed into a 2DOF air damped vibrating system representing an air damped dynamic vibration absorber (DVA) with an appropriate change in the ratio μ of the main mass and the absorber mass i.e. when mass ratio μ >> 1. Also the effect of variation of the mass ratio, air damping ratio and air spring rate ratio, on the motion transmissibility at the resonant frequency of the main mass of the DVA has been dis- cussed. It is shown that, as the air damping ratio in the absorber system increases, there is a substantial decrease in the motion transmissibility of the main mass system where the air damper has been modeled as a Maxwell type. Optimal value of the air damping ratio for the minimum motion transmissibility of the main mass of the system has been determined. An experimental setup has been designed and developed with a control system to vary air pressure in the damper in the absorber system. The motion transmissibility characteristics of the main mass system have been obtained, and the optimal value of the air damping ratio has been determined for minimum motion transmissibility of the main mass of the
文摘<span style="font-family:Verdana;">In work reported here, the dynamic properties and low-velocity impact response of woven carbon/epoxy laminates incorporating a novel 3D interlaminar reinforcement concept with dense layers of Z-axis oriented milled carbon fiber Supercomposite</span><sup><span style="font-family:Verdana;">TM</span></sup><span style="font-family:Verdana;"> prepregs, are presented. Impulse-frequency response vibration technique is used for non-destructive evaluation of the dynamic flexural modulus (stiffness) and loss factor (intrinsic damping) of woven carbon/epoxy control and Supercomposite</span><sup><span style="font-family:Verdana;">TM</span></sup><span style="font-family:Verdana;"> laminates. Low-velocity punch-shear tests were performed on control and Supercomposite</span><sup><span style="font-family:Verdana;">TM</span></sup><span style="font-family:Verdana;"> laminates according to ASTM D3763 Standard using a drop-weight impact test system. Control panels had all layers of 3K plain woven carbon/epoxy prepregs, with a dense interlaminar reinforcement of milled carbon fibers in Z-</span><span style="font-family:;" "=""> </span><span><span style="font-family:Verdana;">direction used in designing the Supercomposite</span><sup><span style="font-family:Verdana;">TM</span></sup><span style="font-family:Verdana;"> laminate—both having same areal density. Impulse-frequency response vibration experiments show that with a 50% replacement of woven carbon fabric in control panel with milled carbon fibers in Z direction dynamic flexural modulus reduced 25%</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">30% (loss in stiffness) and damping increased by about the same 25%</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">30%. Low-velocity punch-shear tests demonstrated about</span><span style="font-family:;" "=""> </span><span><span style="font-family:Verdana;">25% reduction in energy absorption for Supercomposite</span><sup><span style="font-family:Verdana;">TM</span></sup><span style="font-family:Verdana;"> laminates with the replacement of 50% woven carbon fabric in control panel.</span></span>
基金Project(51278104)supported by the National Natural Science Foundation of ChinaProject(2011Y03)supported by Jiangsu Province Transportation Scientific Research Programs,China+1 种基金Project(20133204120015)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(12KJB560003)supported by Jiangsu Province Universities Natural Science Foundation,China
文摘The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite element simulations, the static deformations of different components, stress increments and distributions of the girder, as well as the vibration characteristics and damping ratio of the Hunan Road Bridge were analyzed, which is the widest self-anchored suspension bridge in China at present. The dynamic responses were calculated using the Newmark-β integration method assisted by the simulation models of bridge and vehicles, the influences on the dynamic impact coefficient(DIC) brought by the vehicle parameters, girder width, eccentricity travel and deck flatness were also researched. The spatial effect of the girder is obvious due to the extra width, which performs as the stress increments distribute unevenly along the transverse direction, and the girder deflections and stress increments of the upper plate change as a "V" and "M" shape respectively under the symmetrical vehicle loads affected by the shear lag effect, cross slope and local effect of the wheels, the maximum of stress increments are located in the junctions with the inner webs. The obvious girder torsional deformation and the apparent unevenness of the hanger forces between the two cable planes under the eccentric vehicle loads, together with the mode shapes such as the girder transverse bending and torsion which appear relatively earlier, all reflect the weakened torsional rigidity of the extra-wide girder. The transverse displacements of towers are more obvious than the longitudinal ones. As for the influences on the DIC, the static effect of the heavier vehicles plays a major role when pass through with a higher speed and the changes of vehicle suspension stiffness generate greater impacts than the suspension damp. The values of DIC in the vehicle-running side during the eccentric travel, affected by the restricts from the static effects of the eccentric moving trucks, are significantly smaller than the vehicle-free side, the increase in the road roughness is the most sensitive one among the above influential factors. The results could provide references for the design, static and dynamic response analysis of the similar extra-wide suspension bridges.
基金financially supported by National Science Foundation(NSF)of Sri Lankathe Natural Sciences and Engineering Research Council(NSERC)of Canada
文摘A thorough understanding on the mechanical properties of carbon nanotube (CNT) is essential in extending the advanced applications of CNT based systems. However, conducting experiments to estimate mechanical properties at this scale is extremely challenging. Therefore, development of mechanistic models to estimate the mechanical properties of CNTs along with the integration of existing continuum mechanics concepts is critically important. This paper presents a comprehensive molecular dynamics simulation study on the size dependency and potential function influence of mechanical properties of CNT. Commonly used reactive bond order (REBO) and adaptive intermolecular reactive bond order (A1REBO) potential functions were considered in this regard. Young's modulus and shear modulus of CNTs are derived by integrating classical continuum mechanics concepts with molecular dynamics simulations. The results indicate that the potential function has a significant influence on the estimated mechanical properties of CNTs, and the influence of potential field is much higher when studying the torsional behaviour of CNTs than the tensile behaviour.
基金the National Natural Science Foundation of China(No.41272320,52108342)the Key Scientific Research Projects of Higher Education Institutions in Henan Province,China(No.21A560009).
文摘The dynamic characteristics of compacted loess are of great significance to the seismic construction of the Loess Plateau area in Northwest China,where earthquakes frequently occur.To study the change in the dynamic modulus of the foundation soil under the combined action of vertical and horizontal earthquakes,a hollow cy-lindrical torsion shear instrument capable of vibrating in four directions was used to perform two-way coupling of compression and torsion of Xi'an compacted loess under different dry density and deviator stress ratios.The results show that increasing the dry density can improve the initial dynamic compression modulus and initial dynamic shear modulus of compacted loess.With an increase in the deviator stress ratio,the initial dynamic compression modulus increases,to a certain extent,but the initial dynamic shear modulus decreases slightly.The dynamic modulus gradually decreases with the development of dynamic strain and tends to be stable,and the dynamic modulus that reaches the same strain increases with an increasing dry density.At the initial stage of dynamic loading,the attenuation of the dynamic shear modulus with the strain development is faster than that of the dynamic compression modulus.Compared with previous research results,it is determined that the dynamic modulus of loess under bidirectional dynamic loading is lower and the attenuation rate is faster than that under single-direction dynamic loading.The deviator stress ratio has a more obvious effect on the dynamic compression modulus.The increase in the deviator stress ratio can increase the dynamic compression modulus,to a certain extent.However,the deviator stress ratio has almost no effect on the dynamic shear modulus,and can therefore be ignored.
基金financially supported by the National Natural Science Foundation of Beijing(No.2182067)the Fundamental Research Funds for the Central Universities(2018ZD09).
文摘A methodology for achieving the maximum bulk or shear modulus in an elastic composite composed of two isotropic phases with distinct Poisson’s ratios is proposed.A topology optimization algorithm is developed which is capable of finding microstructures with extreme properties very close to theoretical upper bounds.The effective mechanical properties of the designed composite are determined by a numerical homogenization technique.The sensitivities with respect to design variables are derived by simultaneously interpolating Young’smodulus and Poisson’s ratio using different parameters.The so-called solid isotropicmaterial with penalizationmethod is developed to establish the optimization formulation.Maximum bulk or shearmodulus is considered as the objective function,and the volume fraction of constituent phases is taken as constraints.Themethod ofmoving asymptotes is applied to update the design variables.Several 3D numerical examples are presented to demonstrate the effectiveness of the proposed structural optimization method.The effects of key parameters such as Poisson’s ratios and volume fractions of constituent phase on the final designs are investigated.A series of novel microstructures are obtained fromthe proposed approach.It is found that the optimized bulk and shearmoduli of all the studied composites are very close to the Hashin-Shtrikman-Walpole bounds.