In this study, the 3-dimensional discrete element method is firstly introduced to explain the fracturing damage process of the dynamic split experiment of a special brittle glass ZnS. The corresponding dynamic split e...In this study, the 3-dimensional discrete element method is firstly introduced to explain the fracturing damage process of the dynamic split experiment of a special brittle glass ZnS. The corresponding dynamic split experiment is also performed by using the split Hopkinson pressure bar. Then the numerical results correspond closely to those obtained by experiments, and the fracturing damage mode shows that the sample under high strain rate loading would crack along vertical diameter in the band region between two loading edges, which differs from the static damage mode. Furthermore, by comparing a group of contrast numerical tests, the numerical results prove that loading area upon the top side of samples would influence the fracture mode of dynamic split experiments, which indicates that the narrow loading plane is better.展开更多
With the continuous advancement of China’s infrastructure construction to the west,according to the geographic situation in the southwest region,such as mountainous areas and complex terrain,the road construction pro...With the continuous advancement of China’s infrastructure construction to the west,according to the geographic situation in the southwest region,such as mountainous areas and complex terrain,the road construction process is inevitably accompanied by earth and rock blasting.To improve the quality and safety of the project,this paper addresses the problems of land and rock blasting faced in the construction of mountain road projects,taking the research of rock dynamic mechanics test as the starting point,and using a combination of theoretical analysis and experimental research methods.The specific research content includes the following parts:dynamic impact compression test(SHPB),dynamic splitting tensile test,and stress-strain curve analysis of the test results,which provides the theoretical basis and numerical parameters for the numerical simulation of future engineering blasting.展开更多
基金supported by the National Natural Science Foundation of China (10732010,10972010 and 11028206)
文摘In this study, the 3-dimensional discrete element method is firstly introduced to explain the fracturing damage process of the dynamic split experiment of a special brittle glass ZnS. The corresponding dynamic split experiment is also performed by using the split Hopkinson pressure bar. Then the numerical results correspond closely to those obtained by experiments, and the fracturing damage mode shows that the sample under high strain rate loading would crack along vertical diameter in the band region between two loading edges, which differs from the static damage mode. Furthermore, by comparing a group of contrast numerical tests, the numerical results prove that loading area upon the top side of samples would influence the fracture mode of dynamic split experiments, which indicates that the narrow loading plane is better.
文摘With the continuous advancement of China’s infrastructure construction to the west,according to the geographic situation in the southwest region,such as mountainous areas and complex terrain,the road construction process is inevitably accompanied by earth and rock blasting.To improve the quality and safety of the project,this paper addresses the problems of land and rock blasting faced in the construction of mountain road projects,taking the research of rock dynamic mechanics test as the starting point,and using a combination of theoretical analysis and experimental research methods.The specific research content includes the following parts:dynamic impact compression test(SHPB),dynamic splitting tensile test,and stress-strain curve analysis of the test results,which provides the theoretical basis and numerical parameters for the numerical simulation of future engineering blasting.