期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Time series prediction of mining subsidence based on a SVM 被引量:8
1
作者 Li Peixian Tan Zhixiang +1 位作者 Yan Lili Deng Kazhong 《Mining Science and Technology》 EI CAS 2011年第4期557-562,共6页
In order to study dynamic laws of surface movements over coal mines due to mining activities,a dynamic prediction model of surface movements was established,based on the theory of support vector machines(SVM) and time... In order to study dynamic laws of surface movements over coal mines due to mining activities,a dynamic prediction model of surface movements was established,based on the theory of support vector machines(SVM) and times-series analysis.An engineering application was used to verify the correctness of the model.Measurements from observation stations were analyzed and processed to obtain equal-time interval surface movement data and subjected to tests of stationary,zero means and normality.Then the data were used to train the SVM model.A time series model was established to predict mining subsidence by rational choices of embedding dimensions and SVM parameters.MAPE and WIA were used as indicators to evaluate the accuracy of the model and for generalization performance.In the end,the model was used to predict future surface movements.Data from observation stations in Huaibei coal mining area were used as an example.The results show that the maximum absolute error of subsidence is 9 mm,the maximum relative error 1.5%,the maximum absolute error of displacement 7 mm and the maximum relative error 1.8%.The accuracy and reliability of the model meet the requirements of on-site engineering.The results of the study provide a new approach to investigate the dynamics of surface movements. 展开更多
关键词 Support vector machine Mining subsidence Time series dynamic prediction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部