The paper deals with the dynamic response prediction of the composite structure,which consists of two linear components coupled by some nonlinear vibration isolators. Based on the measured impulse response functions o...The paper deals with the dynamic response prediction of the composite structure,which consists of two linear components coupled by some nonlinear vibration isolators. Based on the measured impulse response functions of the linear components, three kinds of dynamic equations of interfacial integration are proposed and a procedure to transform the dynamic equations of integral type into a set of ordinary differential equations is suggested. Computer simulations and a real test are given to verify the effectiveness of the theoretical results.展开更多
A low frequency dynamic environment prediction of spacecraft using dynamic substructu- ring is presented. The dynamic environment could be used to describe the level of the excitation on the spacecraft itself and auxi...A low frequency dynamic environment prediction of spacecraft using dynamic substructu- ring is presented. The dynamic environment could be used to describe the level of the excitation on the spacecraft itself and auxiliary equipment. In addition, the dynamic environment is a criterion for the structural dynamic design as well as the ground verification test. The proposed prediction method could solve two major problems. The first is the time consumption of analyzing the whole spacecraft model due to the huge amount of degrees of freedom, and the second is multi-source for component structural dynamic models from distributive departments. To demonstrate the feasibility and efficien- cy, the proposed prediction method is applied to resolve a launching satellite case, and the results were compared with those obtained by the traditional prediction technology using the finite element method.展开更多
Mechanical assembly has its own dynamic quality directly affecting the dynamic quality of whole product and should be considered in quality inspection and estimation of mechanical assembly. Based on functional relatio...Mechanical assembly has its own dynamic quality directly affecting the dynamic quality of whole product and should be considered in quality inspection and estimation of mechanical assembly. Based on functional relations between dynamic characteristics involved in mechanical assembly, the effects of assembling process on dynamic characteristics of substructural components of an assembly system are investigated by substructuring analysis. Assembly-coupling dynamic stiffness is clarified as the dominant factor of the effects and can be used as a quantitative measure of assembly dynamic quality. Two computational schemes using frequency response functions(FRFs) to determine the stiffness are provided and discussed by inverse substructuring analysis, including their applicable conditions and implementation procedure in application. Eigenvalue analysis on matrix-ratios of FRFs before and after assembling is employed and well validates the analytical outcomes and the schemes via both a lumped-parameter model and its analogic experimental counterpart. Applying the two schemes to inspect the dynamic quality provides the message of dynamic performance of the assembly system, and therefore improves conventional quality inspection and estimation of mechanical assembly in completeness.展开更多
For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study prop...For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study proposes to investigate the stability and accuracy of the central difference method(CDM)for RTDST considering the specimen mass participation coefficient.First,the theory of the CDM for RTDST is presented.Next,the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated.Finally,numerical simulations and experimental tests are conducted for verifying the effectiveness of the method.The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen,and the stability limit first increases and then decreases as the mass participation coefficient increases.In most cases,the mass participation coefficient will increase the stability limit of the algorithm,but in specific circumstances,the algorithm may lose its stability.The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper.展开更多
-Dynamic interaction characteristics of the model deeply embedded platform and foundation soil are studied by means of dynamic substructuring interface transformation synthesis and dynamic condensation. The theoretica...-Dynamic interaction characteristics of the model deeply embedded platform and foundation soil are studied by means of dynamic substructuring interface transformation synthesis and dynamic condensation. The theoretical analysis, computer programs and practical examples are presented; and the results are compared with those obtained by statical condensation method and finite element method.展开更多
文摘The paper deals with the dynamic response prediction of the composite structure,which consists of two linear components coupled by some nonlinear vibration isolators. Based on the measured impulse response functions of the linear components, three kinds of dynamic equations of interfacial integration are proposed and a procedure to transform the dynamic equations of integral type into a set of ordinary differential equations is suggested. Computer simulations and a real test are given to verify the effectiveness of the theoretical results.
基金Supported by the Ministerial Level Foundation(2012021)
文摘A low frequency dynamic environment prediction of spacecraft using dynamic substructu- ring is presented. The dynamic environment could be used to describe the level of the excitation on the spacecraft itself and auxiliary equipment. In addition, the dynamic environment is a criterion for the structural dynamic design as well as the ground verification test. The proposed prediction method could solve two major problems. The first is the time consumption of analyzing the whole spacecraft model due to the huge amount of degrees of freedom, and the second is multi-source for component structural dynamic models from distributive departments. To demonstrate the feasibility and efficien- cy, the proposed prediction method is applied to resolve a launching satellite case, and the results were compared with those obtained by the traditional prediction technology using the finite element method.
基金Supported by National Natural Science Foundation of China(Grant No.51475211)
文摘Mechanical assembly has its own dynamic quality directly affecting the dynamic quality of whole product and should be considered in quality inspection and estimation of mechanical assembly. Based on functional relations between dynamic characteristics involved in mechanical assembly, the effects of assembling process on dynamic characteristics of substructural components of an assembly system are investigated by substructuring analysis. Assembly-coupling dynamic stiffness is clarified as the dominant factor of the effects and can be used as a quantitative measure of assembly dynamic quality. Two computational schemes using frequency response functions(FRFs) to determine the stiffness are provided and discussed by inverse substructuring analysis, including their applicable conditions and implementation procedure in application. Eigenvalue analysis on matrix-ratios of FRFs before and after assembling is employed and well validates the analytical outcomes and the schemes via both a lumped-parameter model and its analogic experimental counterpart. Applying the two schemes to inspect the dynamic quality provides the message of dynamic performance of the assembly system, and therefore improves conventional quality inspection and estimation of mechanical assembly in completeness.
基金National Natural Science Foundation of China under Grant Nos.51978213 and 51778190the National Key Research and Development Program of China under Grant Nos.2017YFC0703605 and 2016YFC0701106。
文摘For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study proposes to investigate the stability and accuracy of the central difference method(CDM)for RTDST considering the specimen mass participation coefficient.First,the theory of the CDM for RTDST is presented.Next,the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated.Finally,numerical simulations and experimental tests are conducted for verifying the effectiveness of the method.The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen,and the stability limit first increases and then decreases as the mass participation coefficient increases.In most cases,the mass participation coefficient will increase the stability limit of the algorithm,but in specific circumstances,the algorithm may lose its stability.The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper.
文摘-Dynamic interaction characteristics of the model deeply embedded platform and foundation soil are studied by means of dynamic substructuring interface transformation synthesis and dynamic condensation. The theoretical analysis, computer programs and practical examples are presented; and the results are compared with those obtained by statical condensation method and finite element method.