Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the ...Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the nonlinear dynamic behaviors of viscoelastic fluids.However,traditional grid-based multiscale methods are confined to simple viscoelastic flows with short relaxation time,and there is a lack of uniform multiscale scheme available for coupling different solvers in the simulations of viscoelastic fluids.In this paper,a universal multiscale method coupling an improved smoothed particle hydrodynamics(SPH)and multiscale universal interface(MUI)library is presented for viscoelastic flows.The proposed multiscale method builds on an improved SPH method and leverages the MUI library to facilitate the exchange of information among different solvers in the overlapping domain.We test the capability and flexibility of the presented multiscale method to deal with complex viscoelastic flows by solving different multiscale problems of viscoelastic flows.In the first example,the simulation of a viscoelastic Poiseuille flow is carried out by two coupled improved SPH methods with different spatial resolutions.The effects of exchanging different physical quantities on the numerical results in both the upper and lower domains are also investigated as well as the absolute errors in the overlapping domain.In the second example,the complex Wannier flow with different Weissenberg numbers is further simulated by two improved SPH methods and coupling the improved SPH method and the dissipative particle dynamics(DPD)method.The numerical results show that the physical quantities for viscoelastic flows obtained by the presented multiscale method are in consistence with those obtained by a single solver in the overlapping domain.Moreover,transferring different physical quantities has an important effect on the numerical results.展开更多
Efficiency of calculating a dynamic response is an important point of the compliant mechanism for posture adjustment.Dynamic modeling with low orders of a 2R1T compliant parallel mechanism is studied in the paper.The ...Efficiency of calculating a dynamic response is an important point of the compliant mechanism for posture adjustment.Dynamic modeling with low orders of a 2R1T compliant parallel mechanism is studied in the paper.The mechanism with two out-of-plane rotational and one lifting degrees of freedom(DoFs)plays an important role in posture adjustment.Based on elastic beam theory,the stiffness matrix and mass matrix of the beam element are established where the moment of inertia is considered.To improve solving efficiency,a dynamic model with low orders of the mechanism is established based on a modified modal synthesis method.Firstly,each branch of the RPR type mechanism is divided into a substructure.Subsequently,a set of hypothetical modes of each substructure is obtained based on the C-B method.Finally,dynamic equation of the whole mechanism is established by the substructure assembly.A dynamic experiment is conducted to verify the dynamic characteristics of the compliant mechanism.展开更多
Free-interface dual-compatibility modal synthesis method(compatibility of both force and displacement on interfaces)is introduced to large-scale civil engineering structure to enhance computation efficiency. The basic...Free-interface dual-compatibility modal synthesis method(compatibility of both force and displacement on interfaces)is introduced to large-scale civil engineering structure to enhance computation efficiency. The basic equations of the method are first set up, and then the mode cut-off principle and the dividing principle are proposed. MATLAB is used for simulation in different frame structures. The simulation results demonstrate the applicability of this substructure method to civil engineering structures and the correctness of the proposed mode cut-off principle. Studies are also conducted on how to divide the whole structure for better computation efficiency while maintaining better precision. It is observed that the geometry and material properties should be considered, and the synthesis results would be more precise when the inflection points of the mode shapes are taken into consideration. Furthermore, the simulation performed on a large-scale high-rise connected structure further proves the feasibility and efficiency of this modal synthesis method compared with the traditional global method. It is also concluded from the simulation results that the fewer number of DOFs in each substructure will result in better computation efficiency, but too many substructures will be time-consuming due to the tedious synthesis procedures. Moreover, the substructures with free interface will introduce errors and reduce the precision dramatically, which should be avoided.展开更多
基于光滑粒子流体动力学-有限元法(smoothed particle hydrodynamics-finite element method,SPH-FEM)耦合的数值方法,分别从结构破坏形态、冲击力时程、关键点位移和速度、系统能量等方面,研究含大石块泥石流冲击作用下框架结构房屋的...基于光滑粒子流体动力学-有限元法(smoothed particle hydrodynamics-finite element method,SPH-FEM)耦合的数值方法,分别从结构破坏形态、冲击力时程、关键点位移和速度、系统能量等方面,研究含大石块泥石流冲击作用下框架结构房屋的动力响应和破坏机理。计算结果表明:SPH-FEM耦合方法能够较好地模拟泥石流冲击爬高、绕流扩散、淤积稳定过程。考虑了三种泥石流强度等级,在低、中强度冲击情况下,框架房屋填充墙受到破坏,房屋结构整体保持稳定;在高强度冲击情况下,可以观察到框架房屋的逐步倒塌过程,框架柱损坏模式体现了剪切破坏或塑性铰链失效机制。对于房屋结构而言,泥石流的冲击破坏能力主要来自龙头的冲击力,龙身冲击力相对于龙头降幅约34.2%,大石块的集中作用是结构柱体局部破坏的主要原因。系统能量主要通过泥石流动能转化为结构内能(17.8%)和摩擦耗能(82.8%)。展开更多
为减小光散射法的矿井岩尘颗粒物测量质量浓度误差,仿真模拟光子在含尘空间内的随机蒙特卡洛过程,并根据煤、岩尘颗粒物在不同散射面下的捕获光子数以及不同质量浓度范围下动态时间弯曲(dynamic time warping,DTW)距离的差异进行尘源区...为减小光散射法的矿井岩尘颗粒物测量质量浓度误差,仿真模拟光子在含尘空间内的随机蒙特卡洛过程,并根据煤、岩尘颗粒物在不同散射面下的捕获光子数以及不同质量浓度范围下动态时间弯曲(dynamic time warping,DTW)距离的差异进行尘源区分,针对浓度补偿实验获取的岩尘颗粒物测量质量浓度波动较大的问题,使用移动平均和卡尔曼滤波算法进行测量质量浓度的平滑处理。研究结果表明:岩尘颗粒物捕获光子数在90°散射面下有较大差异,在3~555 mg/m^(3)范围内区分煤、岩尘的模数转换差值的DTW判断阈值为23854.06,卡尔曼滤波算法在减小相对测量误差方面比移动平均更好。1#光电传感器在194~555 mg/m^(3)范围内平均相对测量最小误差为-1.34%,2#光电传感器在3~191 mg/m^(3)范围内平均相对测量最小误差为6.06%。研究结果可为矿井粉尘光学测量装置提供数据参考。展开更多
In this paper,an efficien formulation based on the Lagrangian method is presented to investigate the contact–impact problems of f exible multi-body systems.Generally,the penalty method and the Hertz contact law are t...In this paper,an efficien formulation based on the Lagrangian method is presented to investigate the contact–impact problems of f exible multi-body systems.Generally,the penalty method and the Hertz contact law are the most commonly used methods in engineering applications.However,these methods are highly dependent on various non-physical parameters,which have great effects on the simulation results.Moreover,a tremendous number of degrees of freedom in the contact–impact problems will influenc thenumericalefficien ysignificantl.Withtheconsideration of these two problems,a formulation combining the component mode synthesis method and the Lagrangian method is presented to investigate the contact–impact problems in fl xible multi-body system numerically.Meanwhile,the finit element meshing laws of the contact bodies will be studied preliminarily.A numerical example with experimental verificatio will certify the reliability of the presented formulationincontact–impactanalysis.Furthermore,aseries of numerical investigations explain how great the influenc of the finit element meshing has on the simulation results.Finally the limitations of the element size in different regions are summarized to satisfy both the accuracy and efficien y.展开更多
基金Project supported by the National Natural Science Foundation of China(No.52109068)the Water Conservancy Technology Project of Jiangsu Province of China(No.2022060)。
文摘Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the nonlinear dynamic behaviors of viscoelastic fluids.However,traditional grid-based multiscale methods are confined to simple viscoelastic flows with short relaxation time,and there is a lack of uniform multiscale scheme available for coupling different solvers in the simulations of viscoelastic fluids.In this paper,a universal multiscale method coupling an improved smoothed particle hydrodynamics(SPH)and multiscale universal interface(MUI)library is presented for viscoelastic flows.The proposed multiscale method builds on an improved SPH method and leverages the MUI library to facilitate the exchange of information among different solvers in the overlapping domain.We test the capability and flexibility of the presented multiscale method to deal with complex viscoelastic flows by solving different multiscale problems of viscoelastic flows.In the first example,the simulation of a viscoelastic Poiseuille flow is carried out by two coupled improved SPH methods with different spatial resolutions.The effects of exchanging different physical quantities on the numerical results in both the upper and lower domains are also investigated as well as the absolute errors in the overlapping domain.In the second example,the complex Wannier flow with different Weissenberg numbers is further simulated by two improved SPH methods and coupling the improved SPH method and the dissipative particle dynamics(DPD)method.The numerical results show that the physical quantities for viscoelastic flows obtained by the presented multiscale method are in consistence with those obtained by a single solver in the overlapping domain.Moreover,transferring different physical quantities has an important effect on the numerical results.
基金Supported by National Natural Science Foundation of China (Grant No.51975007)。
文摘Efficiency of calculating a dynamic response is an important point of the compliant mechanism for posture adjustment.Dynamic modeling with low orders of a 2R1T compliant parallel mechanism is studied in the paper.The mechanism with two out-of-plane rotational and one lifting degrees of freedom(DoFs)plays an important role in posture adjustment.Based on elastic beam theory,the stiffness matrix and mass matrix of the beam element are established where the moment of inertia is considered.To improve solving efficiency,a dynamic model with low orders of the mechanism is established based on a modified modal synthesis method.Firstly,each branch of the RPR type mechanism is divided into a substructure.Subsequently,a set of hypothetical modes of each substructure is obtained based on the C-B method.Finally,dynamic equation of the whole mechanism is established by the substructure assembly.A dynamic experiment is conducted to verify the dynamic characteristics of the compliant mechanism.
基金Supported by the National Natural Science Foundation of China(No.51108089)Doctoral Programs Foundation of Ministry of Education of China(No.20113514120005)the Foundation of the Education Department of Fujian Province(No.JA14057)
文摘Free-interface dual-compatibility modal synthesis method(compatibility of both force and displacement on interfaces)is introduced to large-scale civil engineering structure to enhance computation efficiency. The basic equations of the method are first set up, and then the mode cut-off principle and the dividing principle are proposed. MATLAB is used for simulation in different frame structures. The simulation results demonstrate the applicability of this substructure method to civil engineering structures and the correctness of the proposed mode cut-off principle. Studies are also conducted on how to divide the whole structure for better computation efficiency while maintaining better precision. It is observed that the geometry and material properties should be considered, and the synthesis results would be more precise when the inflection points of the mode shapes are taken into consideration. Furthermore, the simulation performed on a large-scale high-rise connected structure further proves the feasibility and efficiency of this modal synthesis method compared with the traditional global method. It is also concluded from the simulation results that the fewer number of DOFs in each substructure will result in better computation efficiency, but too many substructures will be time-consuming due to the tedious synthesis procedures. Moreover, the substructures with free interface will introduce errors and reduce the precision dramatically, which should be avoided.
文摘基于光滑粒子流体动力学-有限元法(smoothed particle hydrodynamics-finite element method,SPH-FEM)耦合的数值方法,分别从结构破坏形态、冲击力时程、关键点位移和速度、系统能量等方面,研究含大石块泥石流冲击作用下框架结构房屋的动力响应和破坏机理。计算结果表明:SPH-FEM耦合方法能够较好地模拟泥石流冲击爬高、绕流扩散、淤积稳定过程。考虑了三种泥石流强度等级,在低、中强度冲击情况下,框架房屋填充墙受到破坏,房屋结构整体保持稳定;在高强度冲击情况下,可以观察到框架房屋的逐步倒塌过程,框架柱损坏模式体现了剪切破坏或塑性铰链失效机制。对于房屋结构而言,泥石流的冲击破坏能力主要来自龙头的冲击力,龙身冲击力相对于龙头降幅约34.2%,大石块的集中作用是结构柱体局部破坏的主要原因。系统能量主要通过泥石流动能转化为结构内能(17.8%)和摩擦耗能(82.8%)。
基金supported by the National Science Foundation of China (Grants 11132007,11272203)
文摘In this paper,an efficien formulation based on the Lagrangian method is presented to investigate the contact–impact problems of f exible multi-body systems.Generally,the penalty method and the Hertz contact law are the most commonly used methods in engineering applications.However,these methods are highly dependent on various non-physical parameters,which have great effects on the simulation results.Moreover,a tremendous number of degrees of freedom in the contact–impact problems will influenc thenumericalefficien ysignificantl.Withtheconsideration of these two problems,a formulation combining the component mode synthesis method and the Lagrangian method is presented to investigate the contact–impact problems in fl xible multi-body system numerically.Meanwhile,the finit element meshing laws of the contact bodies will be studied preliminarily.A numerical example with experimental verificatio will certify the reliability of the presented formulationincontact–impactanalysis.Furthermore,aseries of numerical investigations explain how great the influenc of the finit element meshing has on the simulation results.Finally the limitations of the element size in different regions are summarized to satisfy both the accuracy and efficien y.