期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Nonlinear Dynamic System Identification of ARX Model for Speech Signal Identification
1
作者 Rakesh Kumar Pattanaik Mihir N.Mohanty +1 位作者 Srikanta Ku.Mohapatra Binod Ku.Pattanayak 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期195-208,共14页
System Identification becomes very crucial in the field of nonlinear and dynamic systems or practical systems.As most practical systems don’t have prior information about the system behaviour thus,mathematical modell... System Identification becomes very crucial in the field of nonlinear and dynamic systems or practical systems.As most practical systems don’t have prior information about the system behaviour thus,mathematical modelling is required.The authors have proposed a stacked Bidirectional Long-Short Term Memory(Bi-LSTM)model to handle the problem of nonlinear dynamic system identification in this paper.The proposed model has the ability of faster learning and accurate modelling as it can be trained in both forward and backward directions.The main advantage of Bi-LSTM over other algorithms is that it processes inputs in two ways:one from the past to the future,and the other from the future to the past.In this proposed model a backward-running Long-Short Term Memory(LSTM)can store information from the future along with application of two hidden states together allows for storing information from the past and future at any moment in time.The proposed model is tested with a recorded speech signal to prove its superiority with the performance being evaluated through Mean Square Error(MSE)and Root Means Square Error(RMSE).The RMSE and MSE performances obtained by the proposed model are found to be 0.0218 and 0.0162 respectively for 500 Epochs.The comparison of results and further analysis illustrates that the proposed model achieves better performance over other models and can obtain higher prediction accuracy along with faster convergence speed. 展开更多
关键词 Nonlinear dynamic system identification long-short term memory bidirectional-long-short term memory auto-regressive with exogenous
下载PDF
Dynamic System Identification of Underwater Vehicles Using Multi-output Gaussian Processes
2
作者 Wilmer Ariza Ramirez Jus Kocijan +2 位作者 Zhi Quan Leong Hung Duc Nguyen Shantha Gamini Jayasinghe 《International Journal of Automation and computing》 EI CSCD 2021年第5期681-693,共13页
Non-parametric system identification with Gaussian processes for underwater vehicles is explored in this research with the purpose of modelling autonomous underwater vehicle(AUV) dynamics with a low amount of data. Mu... Non-parametric system identification with Gaussian processes for underwater vehicles is explored in this research with the purpose of modelling autonomous underwater vehicle(AUV) dynamics with a low amount of data. Multi-output Gaussian processes and their aptitude for modelling the dynamic system of an underactuated AUV without losing the relationships between tied outputs are used. The simulation of a first-principle model of a Remus 100 AUV is employed to capture data for the training and validation of the multi-output Gaussian processes. The metric and required procedure to carry out multi-output Gaussian processes for AUV with 6 degrees of freedom(DoF) is also shown in this paper. Multi-output Gaussian processes compared with the popular technique of recurrent neural network show that multi-output Gaussian processes manage to surpass RNN for non-parametric dynamic system identification in underwater vehicles with highly coupled DoF with the added benefit of providing the measurement of confidence. 展开更多
关键词 Dependent Gaussian processes dynamic system identification multi-output Gaussian processes non-parametric identification autonomous underwater vehicle(AUV)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部