Reversing the syntactic format of program inputs and data structures in binaries plays a vital role for understanding program behaviors in many security applications.In this paper,we propose a collaborative reversing ...Reversing the syntactic format of program inputs and data structures in binaries plays a vital role for understanding program behaviors in many security applications.In this paper,we propose a collaborative reversing technique by capturing the mapping relationship between input fields and program data structures.The key insight behind our paper is that program uses corresponding data structures as references to parse and access different input fields,and every field could be identified by reversing its corresponding data structure.In details,we use a finegrained dynamic taint analysis to monitor the propagation of inputs.By identifying base pointers for each input byte,we could reverse data structures and conversely identify fields based on their referencing data structures.We construct several experiments to evaluate the effectiveness.Experiment results show that our approach could effectively reverse precise input formats,and provide unique benefits to two representative security applications,exploit diagnosis and malware analysis.展开更多
Software vulnerabilities are the root cause of various information security incidents while dynamic taint analysis is an emerging program analysis technique. In this paper, to maximize the use of the technique to dete...Software vulnerabilities are the root cause of various information security incidents while dynamic taint analysis is an emerging program analysis technique. In this paper, to maximize the use of the technique to detect software vulnerabilities, we present SwordDTA, a tool that can perform dynamic taint analysis for binaries. This tool is flexible and extensible that it can work with commodity software and hardware. It can be used to detect software vulnerabilities with vulnerability modeling and taint check. We evaluate it with a number of commonly used real-world applications. The experimental results show that SwordDTA is capable of detecting at least four kinds of softavare vulnerabilities including buffer overflow, integer overflow, division by zero and use-after-free, and is applicable for a wide range of software.展开更多
Proprietary(or semi-proprietary)protocols are widely adopted in industrial control systems(ICSs).Inferring protocol format by reverse engineering is important for many network security applications,e.g.,program tests ...Proprietary(or semi-proprietary)protocols are widely adopted in industrial control systems(ICSs).Inferring protocol format by reverse engineering is important for many network security applications,e.g.,program tests and intrusion detection.Conventional protocol reverse engineering methods have been proposed which are considered time-consuming,tedious,and error-prone.Recently,automatical protocol reverse engineering methods have been proposed which are,however,neither effective in handling binary-based ICS protocols based on network traffic analysis nor accurate in extracting protocol fields from protocol implementations.In this paper,we present a framework called the industrial control system protocol reverse engineering framework(ICSPRF)that aims to extract ICS protocol fields with high accuracy.ICSPRF is based on the key insight that an individual field in a message is typically handled in the same execution context,e.g.,basic block(BBL)group.As a result,by monitoring program execution,we can collect the tainted data information processed in every BBL group in the execution trace and cluster it to derive the protocol format.We evaluate our approach with six open-source ICS protocol implementations.The results show that ICSPRF can identify individual protocol fields with high accuracy(on average a 94.3%match ratio).ICSPRF also has a low coarse-grained and overly fine-grained match ratio.For the same metric,ICSPRF is more accurate than AutoFormat(88.5%for all evaluated protocols and 80.0%for binary-based protocols).展开更多
基金the National Natural Science Foundation of China,the foundation of State Key Lab.for Novel Software Technology in Nanjing University,the foundation of Key Laboratory of Information Assurance Technology
文摘Reversing the syntactic format of program inputs and data structures in binaries plays a vital role for understanding program behaviors in many security applications.In this paper,we propose a collaborative reversing technique by capturing the mapping relationship between input fields and program data structures.The key insight behind our paper is that program uses corresponding data structures as references to parse and access different input fields,and every field could be identified by reversing its corresponding data structure.In details,we use a finegrained dynamic taint analysis to monitor the propagation of inputs.By identifying base pointers for each input byte,we could reverse data structures and conversely identify fields based on their referencing data structures.We construct several experiments to evaluate the effectiveness.Experiment results show that our approach could effectively reverse precise input formats,and provide unique benefits to two representative security applications,exploit diagnosis and malware analysis.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(2012AA012902)the“HGJ”National Major Technological Projects(2013ZX01045-004)
文摘Software vulnerabilities are the root cause of various information security incidents while dynamic taint analysis is an emerging program analysis technique. In this paper, to maximize the use of the technique to detect software vulnerabilities, we present SwordDTA, a tool that can perform dynamic taint analysis for binaries. This tool is flexible and extensible that it can work with commodity software and hardware. It can be used to detect software vulnerabilities with vulnerability modeling and taint check. We evaluate it with a number of commonly used real-world applications. The experimental results show that SwordDTA is capable of detecting at least four kinds of softavare vulnerabilities including buffer overflow, integer overflow, division by zero and use-after-free, and is applicable for a wide range of software.
基金supported by the National Natural Science Foundation of China(No.61833015)。
文摘Proprietary(or semi-proprietary)protocols are widely adopted in industrial control systems(ICSs).Inferring protocol format by reverse engineering is important for many network security applications,e.g.,program tests and intrusion detection.Conventional protocol reverse engineering methods have been proposed which are considered time-consuming,tedious,and error-prone.Recently,automatical protocol reverse engineering methods have been proposed which are,however,neither effective in handling binary-based ICS protocols based on network traffic analysis nor accurate in extracting protocol fields from protocol implementations.In this paper,we present a framework called the industrial control system protocol reverse engineering framework(ICSPRF)that aims to extract ICS protocol fields with high accuracy.ICSPRF is based on the key insight that an individual field in a message is typically handled in the same execution context,e.g.,basic block(BBL)group.As a result,by monitoring program execution,we can collect the tainted data information processed in every BBL group in the execution trace and cluster it to derive the protocol format.We evaluate our approach with six open-source ICS protocol implementations.The results show that ICSPRF can identify individual protocol fields with high accuracy(on average a 94.3%match ratio).ICSPRF also has a low coarse-grained and overly fine-grained match ratio.For the same metric,ICSPRF is more accurate than AutoFormat(88.5%for all evaluated protocols and 80.0%for binary-based protocols).