期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Application of FLUENT on fine-scale simulation of wind field over complex terrain 被引量:2
1
作者 Lei Li LiJie Zhang +3 位作者 Ning Zhang Fei Hu Yin Jiang WeiMei Jiang 《Research in Cold and Arid Regions》 2010年第5期411-418,共8页
The state-of-art Computational Fluid Dynamics (CFD) codes FLUENT is applied in a fine-scale simulation of the wind field over a complex terrain. Several numerical tests are performed to validate the capability of FL... The state-of-art Computational Fluid Dynamics (CFD) codes FLUENT is applied in a fine-scale simulation of the wind field over a complex terrain. Several numerical tests are performed to validate the capability of FLUENT on describing the wind field details over a complex terrain. The results of the numerical tests show that FLUENT can simulate the wind field over extremely complex terrain, which cannot be simulated by mesoscale models. The reason why FLUENT can cope with extremely complex terrain, which can not be coped with by mesoscale models, relies on some particular techniques adopted by FLUENT, such as computer-aided design (CAD) technique, unstructured grid technique and finite volume method. Compared with mesoscale models, FLUENT can describe terrain in much more accurate details and can provide wind simulation results with higher resolution and more accuracy. 展开更多
关键词 FLUENT Computational Fluid dynamics (CFD) complex terrain wind field fine-scale simulation
下载PDF
Three-dimensional path planning for unmanned aerial vehicle based on interfered fluid dynamical system 被引量:28
2
作者 Wang Honglun Lyu Wentao +2 位作者 Yao Peng Liang Xiao Liu Chang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第1期229-239,共11页
This paper proposes a method for planning the three-dimensional path for low-flying unmanned aerial vehicle(UAV) in complex terrain based on interfered fluid dynamical system(IFDS) and the theory of obstacle avoid... This paper proposes a method for planning the three-dimensional path for low-flying unmanned aerial vehicle(UAV) in complex terrain based on interfered fluid dynamical system(IFDS) and the theory of obstacle avoidance by the flowing stream. With no requirement of solutions to fluid equations under complex boundary conditions, the proposed method is suitable for situations with complex terrain and different shapes of obstacles. Firstly, by transforming the mountains, radar and anti-aircraft fire in complex terrain into cylindrical, conical, spherical, parallelepiped obstacles and their combinations, the 3D low-flying path planning problem is turned into solving streamlines for obstacle avoidance by fluid flow. Secondly, on the basis of a unified mathematical expression of typical obstacle shapes including sphere, cylinder, cone and parallelepiped, the modulation matrix for interfered fluid dynamical system is constructed and 3D streamlines around a single obstacle are obtained. Solutions to streamlines with multiple obstacles are then derived using weighted average of the velocity field. Thirdly, extra control force method and virtual obstacle method are proposed to deal with the stagnation point and the case of obstacles' overlapping respectively. Finally, taking path length and flight height as sub-goals, genetic algorithm(GA) is used to obtain optimal 3D path under the maneuverability constraints of the UAV. Simulation results show that the environmental modeling is simple and the path is smooth and suitable for UAV. Theoretical proof is also presented to show that the proposed method has no effect on the characteristics of fluid avoiding obstacles. 展开更多
关键词 obstacles terrain dynamical avoidance unmanned constraints overlapping unified flying spherical
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部