In this paper, the discussion is made on the problem of the oceanic response caused by air-sea interaction under storm. First, the perturbation differential equations for the problem are given, and the interaction fun...In this paper, the discussion is made on the problem of the oceanic response caused by air-sea interaction under storm. First, the perturbation differential equations for the problem are given, and the interaction functions are supposed to be the solving conditions. Next, the nonlinear diffusion equations of the problem are solved by using the method of the given variable transforms and the specific variable power series. Finally, the response disturbances to the circular intense storm is calculated so as to discribe quantitatively the evolution processes of the oceanic response.展开更多
The(submicron+micron) bimodal size Si Cp-reinforced Mg matrix composite was compressed at the temperature of 270–420 °C and strain rate of 0.001–1 s^-1. Then, dynamic recrystallization(DRX) behavior of the...The(submicron+micron) bimodal size Si Cp-reinforced Mg matrix composite was compressed at the temperature of 270–420 °C and strain rate of 0.001–1 s^-1. Then, dynamic recrystallization(DRX) behavior of the composite was investigated by thermodynamic method and verified by microstructure analysis. Results illustrated that the composite possess the lower critical strain and higher DRX ratio as compared to monolithic Mg alloys during hot deformation process. The predicted DRX ratio increased with the proceeding of compression, which was well consistent with the experimental value. Results from thermodynamic calculation suggested that the occurrence of DRX could be promoted by Si Cp, which would be further proved by microstructure analysis. Formation of particle deformation zone around micron Si Cp played a significant role in promoting DRX nucleation. Nevertheless, the distribution of submicron Si Cp was increasingly uniform with the proceeding of compression, which could fully restrain grain growth. Therefore, the corporate effects of micron and submicron Si Cp on DRX contributed to the improvement of DRXed ratio and the refinement of grain size for the composite during compression process.展开更多
文摘In this paper, the discussion is made on the problem of the oceanic response caused by air-sea interaction under storm. First, the perturbation differential equations for the problem are given, and the interaction functions are supposed to be the solving conditions. Next, the nonlinear diffusion equations of the problem are solved by using the method of the given variable transforms and the specific variable power series. Finally, the response disturbances to the circular intense storm is calculated so as to discribe quantitatively the evolution processes of the oceanic response.
基金supported by the National Natural Science Foundation of China (Nos. 51201112, 51274149 and 51474152)the Natural Science Foundation of Shanxi (No. 2013021013-3)the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20121402120004)
文摘The(submicron+micron) bimodal size Si Cp-reinforced Mg matrix composite was compressed at the temperature of 270–420 °C and strain rate of 0.001–1 s^-1. Then, dynamic recrystallization(DRX) behavior of the composite was investigated by thermodynamic method and verified by microstructure analysis. Results illustrated that the composite possess the lower critical strain and higher DRX ratio as compared to monolithic Mg alloys during hot deformation process. The predicted DRX ratio increased with the proceeding of compression, which was well consistent with the experimental value. Results from thermodynamic calculation suggested that the occurrence of DRX could be promoted by Si Cp, which would be further proved by microstructure analysis. Formation of particle deformation zone around micron Si Cp played a significant role in promoting DRX nucleation. Nevertheless, the distribution of submicron Si Cp was increasingly uniform with the proceeding of compression, which could fully restrain grain growth. Therefore, the corporate effects of micron and submicron Si Cp on DRX contributed to the improvement of DRXed ratio and the refinement of grain size for the composite during compression process.