Abstract Reactivity measurement is an essential part of a zero-power physics test,which is critical to reactor design and development.The rod drop experimental technique is used to measure the control rod worth in a z...Abstract Reactivity measurement is an essential part of a zero-power physics test,which is critical to reactor design and development.The rod drop experimental technique is used to measure the control rod worth in a zero-power physics test.The conventional rod drop experimental technique is limited by the spatial effect and the difference between the calculated static reactivity and measured dynamic reactivity;thus,the method must be improved.In this study,a modified rod drop experimental technique that constrains the detector neutron flux shape function based on three-dimensional space–time dynamics to reduce the reactivity perturbation and a new method for calculating the detector neutron flux shape function are proposed.Correction factors were determined using Monte Carlo N-particle transport code and transient analysis code for a pressurized water reactor at the Ulsan National Institute of Science and Technology and Xi’an Jiaotong University,and a large reactivity of over 2000 pcm was measured using the modified technique.This research evaluated the modified technique accuracy,studied the influence of the correction factors on the modification,and investigated the effect of constraining the shape function on the reactivity perturbation reduction caused by the difference between the calculated neutron flux and true value,using the new method to calculate the shape function of the detector neutron flux and avoiding the neutron detector response function(weighting factor)calculation.展开更多
Dithering optimization techniques can be divided into the phase-optimized technique and the intensity-optimized technique. The problem with the former is the poor sensitivity to various defocusing amounts, and the pro...Dithering optimization techniques can be divided into the phase-optimized technique and the intensity-optimized technique. The problem with the former is the poor sensitivity to various defocusing amounts, and the problem with the latter is that it cannot enhance phase quality directly nor efficiently. In this paper, we present a multi-objective optimization framework for three-dimensional(3D) measurement by utilizing binary defocusing technique. Moreover, a binary patch optimization technique is used to solve the time-consuming issue of genetic algorithm. It is demonstrated that the presented technique consistently obtains significant phase performance improvement under various defocusing amounts.展开更多
In optical three-dimensional shape measurement, a method of improving the measurement precision for phase reconstruction without phase unwrapping is analyzed in detail. Intensities of any five consecutive pixels that ...In optical three-dimensional shape measurement, a method of improving the measurement precision for phase reconstruction without phase unwrapping is analyzed in detail. Intensities of any five consecutive pixels that lie in the x-axis direction of the phase domain are given. Partial derivatives of the phase function in the x- and y-axis directions are obtained with a phase-shifting mechanism, the origin of which is analysed. Furthermore, to avoid phase unwrapping in the phase reconstruction, we derive the gradient of the phase function and perform a two-dimensional integral along the x- and y-axis directions. The reconstructed phase can be obtained directly by performing numerical integration, and thus it is of great convenience for phase reconstruction. Finally, the results of numerical simulations and practical experiments verify the correctness of the proposed method.展开更多
This paper conducts a trade-off between efficiency and accuracy of three-dimensional(3 D)shape measurement based on the triangulation principle,and introduces a flying and precise 3 D shape measurement method based on...This paper conducts a trade-off between efficiency and accuracy of three-dimensional(3 D)shape measurement based on the triangulation principle,and introduces a flying and precise 3 D shape measurement method based on multiple parallel line lasers.Firstly,we establish the measurement model of the multiple parallel line lasers system,and introduce the concept that multiple base planes can help to deduce the unified formula of the measurement system and are used in simplifying the process of the calibration.Then,the constraint of the line spatial frequency,which maximizes the measurement efficiency while ensuring accuracy,is determined according to the height distribution of the object.Secondly,the simulation analyzing the variation of the systemic resolution quantitatively under the circumstance of a set of specific parameters is performed,which provides a fundamental thesis for option of the four system parameters.Thirdly,for the application of the precision measurement in the industrial field,additional profiles are acquired to improve the lateral resolution by applying a motor to scan the 3 D surface.Finally,compared with the line laser,the experimental study shows that the present method of obtaining 41220 points per frame improves the measurement efficiency.Furthermore,the accuracy and the process of the calibration are advanced in comparison with the existing multiple-line laser and the structured light makes an accuracy better than 0.22 mm at a distance of 956.02 mm.展开更多
In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation o...In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.展开更多
文摘Abstract Reactivity measurement is an essential part of a zero-power physics test,which is critical to reactor design and development.The rod drop experimental technique is used to measure the control rod worth in a zero-power physics test.The conventional rod drop experimental technique is limited by the spatial effect and the difference between the calculated static reactivity and measured dynamic reactivity;thus,the method must be improved.In this study,a modified rod drop experimental technique that constrains the detector neutron flux shape function based on three-dimensional space–time dynamics to reduce the reactivity perturbation and a new method for calculating the detector neutron flux shape function are proposed.Correction factors were determined using Monte Carlo N-particle transport code and transient analysis code for a pressurized water reactor at the Ulsan National Institute of Science and Technology and Xi’an Jiaotong University,and a large reactivity of over 2000 pcm was measured using the modified technique.This research evaluated the modified technique accuracy,studied the influence of the correction factors on the modification,and investigated the effect of constraining the shape function on the reactivity perturbation reduction caused by the difference between the calculated neutron flux and true value,using the new method to calculate the shape function of the detector neutron flux and avoiding the neutron detector response function(weighting factor)calculation.
基金Project supported by the Zhejiang Provincial Welfare Technology Applied Research Project,China(Grant No.2017C31080)
文摘Dithering optimization techniques can be divided into the phase-optimized technique and the intensity-optimized technique. The problem with the former is the poor sensitivity to various defocusing amounts, and the problem with the latter is that it cannot enhance phase quality directly nor efficiently. In this paper, we present a multi-objective optimization framework for three-dimensional(3D) measurement by utilizing binary defocusing technique. Moreover, a binary patch optimization technique is used to solve the time-consuming issue of genetic algorithm. It is demonstrated that the presented technique consistently obtains significant phase performance improvement under various defocusing amounts.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61144006)
文摘In optical three-dimensional shape measurement, a method of improving the measurement precision for phase reconstruction without phase unwrapping is analyzed in detail. Intensities of any five consecutive pixels that lie in the x-axis direction of the phase domain are given. Partial derivatives of the phase function in the x- and y-axis directions are obtained with a phase-shifting mechanism, the origin of which is analysed. Furthermore, to avoid phase unwrapping in the phase reconstruction, we derive the gradient of the phase function and perform a two-dimensional integral along the x- and y-axis directions. The reconstructed phase can be obtained directly by performing numerical integration, and thus it is of great convenience for phase reconstruction. Finally, the results of numerical simulations and practical experiments verify the correctness of the proposed method.
文摘This paper conducts a trade-off between efficiency and accuracy of three-dimensional(3 D)shape measurement based on the triangulation principle,and introduces a flying and precise 3 D shape measurement method based on multiple parallel line lasers.Firstly,we establish the measurement model of the multiple parallel line lasers system,and introduce the concept that multiple base planes can help to deduce the unified formula of the measurement system and are used in simplifying the process of the calibration.Then,the constraint of the line spatial frequency,which maximizes the measurement efficiency while ensuring accuracy,is determined according to the height distribution of the object.Secondly,the simulation analyzing the variation of the systemic resolution quantitatively under the circumstance of a set of specific parameters is performed,which provides a fundamental thesis for option of the four system parameters.Thirdly,for the application of the precision measurement in the industrial field,additional profiles are acquired to improve the lateral resolution by applying a motor to scan the 3 D surface.Finally,compared with the line laser,the experimental study shows that the present method of obtaining 41220 points per frame improves the measurement efficiency.Furthermore,the accuracy and the process of the calibration are advanced in comparison with the existing multiple-line laser and the structured light makes an accuracy better than 0.22 mm at a distance of 956.02 mm.
文摘In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.