A new human action recognition approach was presented based on chaotic invariants and relevance vector machines(RVM).The trajectories of reference joints estimated by skeleton graph matching were adopted for represent...A new human action recognition approach was presented based on chaotic invariants and relevance vector machines(RVM).The trajectories of reference joints estimated by skeleton graph matching were adopted for representing the nonlinear dynamical system of human action.The C-C method was used for estimating delay time and embedding dimension of a phase space which was reconstructed by each trajectory.Then,some chaotic invariants representing action can be captured in the reconstructed phase space.Finally,RVM was used to recognize action.Experiments were performed on the KTH,Weizmann and Ballet human action datasets to test and evaluate the proposed method.The experiment results show that the average recognition accuracy is over91.2%,which validates its effectiveness.展开更多
基金Project(50808025) supported by the National Natural Science Foundation of ChinaProject(20090162110057) supported by the Doctoral Fund of Ministry of Education,China
文摘A new human action recognition approach was presented based on chaotic invariants and relevance vector machines(RVM).The trajectories of reference joints estimated by skeleton graph matching were adopted for representing the nonlinear dynamical system of human action.The C-C method was used for estimating delay time and embedding dimension of a phase space which was reconstructed by each trajectory.Then,some chaotic invariants representing action can be captured in the reconstructed phase space.Finally,RVM was used to recognize action.Experiments were performed on the KTH,Weizmann and Ballet human action datasets to test and evaluate the proposed method.The experiment results show that the average recognition accuracy is over91.2%,which validates its effectiveness.