Split Hopkinson Pressure Bar(SHPB) test was simulated to investigate the distribution of the first principal stress and damage zone of specimen subjected to dynamic compressive load. Numerical models of plate-type spe...Split Hopkinson Pressure Bar(SHPB) test was simulated to investigate the distribution of the first principal stress and damage zone of specimen subjected to dynamic compressive load. Numerical models of plate-type specimen containing cracks with inclined angles of 0°,45° and 90° were also established to investigate the crack propagation and damage evolution under dynamic loading. The results show that the simulation results are in accordance with the failure patterns of specimens in experimental test. The interactions between stress wave and crack with different inclined angles are different; damage usually appears around the crack tips firstly; and then more damage zones develop away from the foregoing damage zone after a period of energy accumulation; eventually,the damage zones run through the specimen in the direction of applied loading and split the specimen into pieces.展开更多
With the continuous advancement of China’s infrastructure construction to the west,according to the geographic situation in the southwest region,such as mountainous areas and complex terrain,the road construction pro...With the continuous advancement of China’s infrastructure construction to the west,according to the geographic situation in the southwest region,such as mountainous areas and complex terrain,the road construction process is inevitably accompanied by earth and rock blasting.To improve the quality and safety of the project,this paper addresses the problems of land and rock blasting faced in the construction of mountain road projects,taking the research of rock dynamic mechanics test as the starting point,and using a combination of theoretical analysis and experimental research methods.The specific research content includes the following parts:dynamic impact compression test(SHPB),dynamic splitting tensile test,and stress-strain curve analysis of the test results,which provides the theoretical basis and numerical parameters for the numerical simulation of future engineering blasting.展开更多
In dynamic test,sampling rate is high and noise is strong,so a signal sparse decomposition method based on Gabor dictionary is put forward.This method iteratively decomposes the signal with the matching pursuit(MP)alg...In dynamic test,sampling rate is high and noise is strong,so a signal sparse decomposition method based on Gabor dictionary is put forward.This method iteratively decomposes the signal with the matching pursuit(MP)algorithm and takes the coherence ratio of the threshold as a condition of iteration termination.Standard MP algorithm is time-consuming,thus an adaptive genetic algorithm is introduced to MP method,which makes computation speed accelerate effectively.Experimental results indicate that this method not only can effectively remove high-frequency noise but also can compress the signal greatly.展开更多
The dynamic recrystallization(DRX) behavior of Ti-6Al-2Zr-1Mo-1V alloy was investigated at deformation temperature of 1000-1100 °C and strain rate of 10-3-1.0 s-1 by using compression test.The results show that...The dynamic recrystallization(DRX) behavior of Ti-6Al-2Zr-1Mo-1V alloy was investigated at deformation temperature of 1000-1100 °C and strain rate of 10-3-1.0 s-1 by using compression test.The results show that discontinuous dynamic recrystallization(DDRX) is the predominant recrystallization mechanism at temperature higher than 1050 °C and strain rate lower than 0.01 s-1.Meanwhile,continuous dynamic recrystallization is the main mechanism observed at temperature below 1050 °C and strain rate above 0.01 s-1,mixed with a few DDRX grains.In addition,decreasing strain rate and increasing deformation temperature are found to facilitate the progress of DRX and refinement of grains in the Ti alloy in β forging process.展开更多
Modeling of a centrifugal compressor is of great significance to surge characteristics and fluid dynamics in the Altitude Ground Test Facilities(AGTF).Real-time Modular Dynamic System Greitzer(MDSG)modeling for dynami...Modeling of a centrifugal compressor is of great significance to surge characteristics and fluid dynamics in the Altitude Ground Test Facilities(AGTF).Real-time Modular Dynamic System Greitzer(MDSG)modeling for dynamic response and simulation of the compression system is introduced.The centrifugal compressor,pipeline network,and valve are divided into pressure output type and mass flow output type for module modeling,and the two types of components alternate when the system is established.The pressure loss and thermodynamics of the system are considered.An air supply compression system of AGTF is modeled and simulated by the MDSG model.The simulation results of mass flow,pressure,and temperature are compared with the experimental results,and the error is less than 5%,which demonstrates the reliability,practicability,and universality of the MDSG model.展开更多
A user-defined three-dimensional (3D) discrete element model was presented to predict the dynamic modulus and phase angle of asphalt concrete (AC). The 3D discrete element method (DEM) model of AC was constructe...A user-defined three-dimensional (3D) discrete element model was presented to predict the dynamic modulus and phase angle of asphalt concrete (AC). The 3D discrete element method (DEM) model of AC was constructed employing a user-defined computer program developed using the "Fish" language in PFC3D. Important microstructural features of AC were modeled, including aggregate gradation, air voids and mastic. The irregular shape of aggregate particle was modeled using a clump of spheres. The developed model was validated through comparing with experimental measurements and then used to simulate the cyclic uniaxial compression test, based on which the dynamic modulus and phase angle were calculated from the output stress- strain relationship. The effects of air void content, aggregate stiffness and volumetric fraction on AC modulus were further investigated. The experimental results show that the 3D DEM model is able to accurately predict both dynamic modulus and phase angle of AC across a range of temperature and loading frequencies. The user- defined 3D model also demonstrated significant improvement over the general existing two-dimensional models.展开更多
This paper outlines the results of experimental study of the dynamic rock failure based on the comparison of dry and saturated limestone samples obtained during the dynamic compression and split tests. The tests were ...This paper outlines the results of experimental study of the dynamic rock failure based on the comparison of dry and saturated limestone samples obtained during the dynamic compression and split tests. The tests were performed using the Kolsky method and its modifications for dynamic splitting. The mechanical data(e.g. strength, time and energy characteristics) of this material at high strain rates are obtained. It is shown that these characteristics are sensitive to the strain rate. A unified interpretation of these rate effects, based on the structuraletemporal approach, is hereby presented. It is demonstrated that the temporal dependence of the dynamic compressive and split tensile strengths of dry and saturated limestone samples can be predicted by the incubation time criterion. Previously discovered possibilities to optimize(minimize) the energy input for the failure process is discussed in connection with industrial rock failure processes. It is shown that the optimal energy input value associated with critical load, which is required to initialize failure in the rock media, strongly depends on the incubation time and the impact duration. The optimal load shapes, which minimize the momentum for a single failure impact, are demonstrated. Through this investigation, a possible approach to reduce the specific energy required for rock cutting by means of high-frequency vibrations is also discussed.展开更多
The medium and warm deformation behaviors of an indirect-extruded Mg-8Sn-IAI-IZn alloy were investigated by compression tests at temperatures between 298 and 523 K and strain rates of 0.001-10 s-1. It was found that t...The medium and warm deformation behaviors of an indirect-extruded Mg-8Sn-IAI-IZn alloy were investigated by compression tests at temperatures between 298 and 523 K and strain rates of 0.001-10 s-1. It was found that the twinning-slip transition temperature was strain rate dependent, and all the true stress-true strain curves could be divided into two groups: concave and convex curves. Associated microstructural investigations indicated that the dynamic recrystallization (DRX) be- havior of the alloy varied with deformation conditions. At high strain rate and low temperature, dynamically recrystallized grains preferentially nucleated and developed in the twinned regions, indicating that twinning-induced DRX was dominant. While, at low strain rate, DRX developed extensively at grain boundaries and twins, and the process of twinning contributed to both oriented nucleation and selective growth. For the studied alloy, cracks mainly initiated from the shear band and twinning lamellar over the ranges of temperature and strain rate currently applied.展开更多
基金Projects(50534030, 50674107, 50490274) supported by the National Natural Science Foundation of ChinaProject(06JJ3028) supported by the Provincial Natural Science Foundation of Hunan, China
文摘Split Hopkinson Pressure Bar(SHPB) test was simulated to investigate the distribution of the first principal stress and damage zone of specimen subjected to dynamic compressive load. Numerical models of plate-type specimen containing cracks with inclined angles of 0°,45° and 90° were also established to investigate the crack propagation and damage evolution under dynamic loading. The results show that the simulation results are in accordance with the failure patterns of specimens in experimental test. The interactions between stress wave and crack with different inclined angles are different; damage usually appears around the crack tips firstly; and then more damage zones develop away from the foregoing damage zone after a period of energy accumulation; eventually,the damage zones run through the specimen in the direction of applied loading and split the specimen into pieces.
文摘With the continuous advancement of China’s infrastructure construction to the west,according to the geographic situation in the southwest region,such as mountainous areas and complex terrain,the road construction process is inevitably accompanied by earth and rock blasting.To improve the quality and safety of the project,this paper addresses the problems of land and rock blasting faced in the construction of mountain road projects,taking the research of rock dynamic mechanics test as the starting point,and using a combination of theoretical analysis and experimental research methods.The specific research content includes the following parts:dynamic impact compression test(SHPB),dynamic splitting tensile test,and stress-strain curve analysis of the test results,which provides the theoretical basis and numerical parameters for the numerical simulation of future engineering blasting.
文摘In dynamic test,sampling rate is high and noise is strong,so a signal sparse decomposition method based on Gabor dictionary is put forward.This method iteratively decomposes the signal with the matching pursuit(MP)algorithm and takes the coherence ratio of the threshold as a condition of iteration termination.Standard MP algorithm is time-consuming,thus an adaptive genetic algorithm is introduced to MP method,which makes computation speed accelerate effectively.Experimental results indicate that this method not only can effectively remove high-frequency noise but also can compress the signal greatly.
基金Project (2007CB613803) supported by the National Basic Research Program of ChinaProject (2010GQC0170) supported by the Natural Science Foundation of Jiangxi Province,ChinaProject (GJJ11159) supported by the Educational Committee of Jiangxi Province,China
文摘The dynamic recrystallization(DRX) behavior of Ti-6Al-2Zr-1Mo-1V alloy was investigated at deformation temperature of 1000-1100 °C and strain rate of 10-3-1.0 s-1 by using compression test.The results show that discontinuous dynamic recrystallization(DDRX) is the predominant recrystallization mechanism at temperature higher than 1050 °C and strain rate lower than 0.01 s-1.Meanwhile,continuous dynamic recrystallization is the main mechanism observed at temperature below 1050 °C and strain rate above 0.01 s-1,mixed with a few DDRX grains.In addition,decreasing strain rate and increasing deformation temperature are found to facilitate the progress of DRX and refinement of grains in the Ti alloy in β forging process.
基金supported in part by the Stable Support Research Project of AECC Sichuan Gas Turbine Establishment,China(No.GJCZ-0013-19)the Open Foundation of State Key Laboratory of Compressor Technology,China(Compressor Technology Laboratory of Anhui Province)(No.SKL-YSJ2020007).
文摘Modeling of a centrifugal compressor is of great significance to surge characteristics and fluid dynamics in the Altitude Ground Test Facilities(AGTF).Real-time Modular Dynamic System Greitzer(MDSG)modeling for dynamic response and simulation of the compression system is introduced.The centrifugal compressor,pipeline network,and valve are divided into pressure output type and mass flow output type for module modeling,and the two types of components alternate when the system is established.The pressure loss and thermodynamics of the system are considered.An air supply compression system of AGTF is modeled and simulated by the MDSG model.The simulation results of mass flow,pressure,and temperature are compared with the experimental results,and the error is less than 5%,which demonstrates the reliability,practicability,and universality of the MDSG model.
基金Funded by the National "863" Plan Foundation of China(No.2006AA11Z110)
文摘A user-defined three-dimensional (3D) discrete element model was presented to predict the dynamic modulus and phase angle of asphalt concrete (AC). The 3D discrete element method (DEM) model of AC was constructed employing a user-defined computer program developed using the "Fish" language in PFC3D. Important microstructural features of AC were modeled, including aggregate gradation, air voids and mastic. The irregular shape of aggregate particle was modeled using a clump of spheres. The developed model was validated through comparing with experimental measurements and then used to simulate the cyclic uniaxial compression test, based on which the dynamic modulus and phase angle were calculated from the output stress- strain relationship. The effects of air void content, aggregate stiffness and volumetric fraction on AC modulus were further investigated. The experimental results show that the 3D DEM model is able to accurately predict both dynamic modulus and phase angle of AC across a range of temperature and loading frequencies. The user- defined 3D model also demonstrated significant improvement over the general existing two-dimensional models.
基金supported by IHC Merwede B.V. as well as by Russian Foundation for Basic Research (Grant Nos. 13-0100349 and 14-01-31510)Russian Science Foundation (“support and development”, Grant No. 14-19-01637)Saint Petersburg University (Grant No. 6.38.243.2014)
文摘This paper outlines the results of experimental study of the dynamic rock failure based on the comparison of dry and saturated limestone samples obtained during the dynamic compression and split tests. The tests were performed using the Kolsky method and its modifications for dynamic splitting. The mechanical data(e.g. strength, time and energy characteristics) of this material at high strain rates are obtained. It is shown that these characteristics are sensitive to the strain rate. A unified interpretation of these rate effects, based on the structuraletemporal approach, is hereby presented. It is demonstrated that the temporal dependence of the dynamic compressive and split tensile strengths of dry and saturated limestone samples can be predicted by the incubation time criterion. Previously discovered possibilities to optimize(minimize) the energy input for the failure process is discussed in connection with industrial rock failure processes. It is shown that the optimal energy input value associated with critical load, which is required to initialize failure in the rock media, strongly depends on the incubation time and the impact duration. The optimal load shapes, which minimize the momentum for a single failure impact, are demonstrated. Through this investigation, a possible approach to reduce the specific energy required for rock cutting by means of high-frequency vibrations is also discussed.
基金support by the Fund for Young Scholars of Taiyuan University of Technology (No. 2012L003)the Ph.D. Programs Foundation of Ministry of Education of China (No.20111402110004)
文摘The medium and warm deformation behaviors of an indirect-extruded Mg-8Sn-IAI-IZn alloy were investigated by compression tests at temperatures between 298 and 523 K and strain rates of 0.001-10 s-1. It was found that the twinning-slip transition temperature was strain rate dependent, and all the true stress-true strain curves could be divided into two groups: concave and convex curves. Associated microstructural investigations indicated that the dynamic recrystallization (DRX) be- havior of the alloy varied with deformation conditions. At high strain rate and low temperature, dynamically recrystallized grains preferentially nucleated and developed in the twinned regions, indicating that twinning-induced DRX was dominant. While, at low strain rate, DRX developed extensively at grain boundaries and twins, and the process of twinning contributed to both oriented nucleation and selective growth. For the studied alloy, cracks mainly initiated from the shear band and twinning lamellar over the ranges of temperature and strain rate currently applied.