The deep structure,material circulation,and dynamic processes in the Southeast Asia have long been an elusive scientific puzzle due to the lack of systematic scientific observations and recognized theoretical models.B...The deep structure,material circulation,and dynamic processes in the Southeast Asia have long been an elusive scientific puzzle due to the lack of systematic scientific observations and recognized theoretical models.Based on the deep seismic tomography using long-period natural earthquake data,in this study,the deep structure and material circulation of the curved subduction system in Southeast Asia was studied,and the dynamic processes since 100 million years ago was reconstructed.It is pointed out that challenges still exist in the precise reconstruction of deep mantle structures of the study area,the influence of multi-stage subduction on deep material exchange and shallow magma activity,as well as the spatiotemporal evolution and coupling mechanism of multi-plate convergence.Future work should focus on high-resolution land-sea joint 3-D seismic tomography imaging of the curved subduction system in the Southeast Asia,combined with geochemical analysis and geodynamic modelling works.展开更多
Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid...Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid-structure interaction(FSI)between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes,especially when the pipe is highly flexible and usually undergoes large deformations.In this work,the geometrically exact model(GEM)for a curved cantilevered pipe conveying pulsating fluid is developed based on the extended Hamilton's principle.The stability of the curved pipe with three different subtended angles is examined with the consideration of steady fluid flow.Specific attention is concentrated on the large-deformation resonance of circular pipes conveying pulsating fluid,which is often encountered in practical engineering.By constructing bifurcation diagrams,oscillating shapes,phase portraits,time traces,and Poincarémaps,the dynamic responses of the curved pipe under various system parameters are revealed.The mean flow velocity of the pulsating fluid is chosen to be either subcritical or supercritical.The numerical results show that the curved pipe conveying pulsating fluid can exhibit rich dynamical behaviors,including periodic and quasi-periodic motions.It is also found that the preferred instability type of a cantilevered curved pipe conveying steady fluid is mainly in the flutter of the second mode.For a moderate value of the mass ratio,however,a third-mode flutter may occur,which is quite different from that of a straight pipe system.展开更多
The equipment used in various fields contains an increasing number of parts with curved surfaces of increasing size.Five-axis computer numerical control(CNC)milling is the main parts machining method,while dynamics an...The equipment used in various fields contains an increasing number of parts with curved surfaces of increasing size.Five-axis computer numerical control(CNC)milling is the main parts machining method,while dynamics analysis has always been a research hotspot.The cutting conditions determined by the cutter axis,tool path,and workpiece geometry are complex and changeable,which has made dynamics research a major challenge.For this reason,this paper introduces the innovative idea of applying dimension reduction and mapping to the five-axis machining of curved surfaces,and proposes an efficient dynamics analysis model.To simplify the research object,the cutter position points along the tool path were discretized into inclined plane five-axis machining.The cutter dip angle and feed deflection angle were used to define the spatial position relationship in five-axis machining.These were then taken as the new base variables to construct an abstract two-dimensional space and establish the mapping relationship between the cutter position point and space point sets to further simplify the dimensions of the research object.Based on the in-cut cutting edge solved by the space limitation method,the dynamics of the inclined plane five-axis machining unit were studied,and the results were uniformly stored in the abstract space to produce a database.Finally,the prediction of the milling force and vibration state along the tool path became a data extraction process that significantly improved efficiency.Two experiments were also conducted which proved the accuracy and efficiency of the proposed dynamics analysis model.This study has great potential for the online synchronization of intelligent machining of large surfaces.展开更多
Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research atten...Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research attention.The traditional method for studying the dynamic strength characteristics of soils is dynamic triaxial testing,and the discrete element simulation of lightweight soils under cyclic load has rarely been considered.To study the meso-mechanisms of the dynamic failure processes of EPS particle lightweight soils,a discrete element numerical model is established using the particle flow code(PFC)software.The contact force,displacement field,and velocity field of lightweight soil under different cumulative compressive strains are studied.The results show that the hysteresis curves of lightweight soil present characteristics of strain accumulation,which reflect the cyclic effects of the dynamic load.When the confining pressure increases,the contact force of the particles also increases.The confining pressure can restrain the motion of the particle system and increase the dynamic strength of the sample.When the confining pressure is held constant,an increase in compressive strain causes minimal change in the contact force between soil particles.However,the contact force between the EPS particles decreases,and their displacement direction points vertically toward the center of the sample.Under an increase in compressive strain,the velocity direction of the particle system changes from a random distribution and points vertically toward the center of the sample.When the compressive strain is 5%,the number of particles deflected in the particle velocity direction increases significantly,and the cumulative rate of deformation in the lightweight soil accelerates.Therefore,it is feasible to use 5%compressive strain as the dynamic strength standard for lightweight soil.Discrete element methods provide a new approach toward the dynamic performance evaluation of lightweight soil subgrades.展开更多
BACKGROUND Non-invasive differential diagnosis between hepatocellular carcinoma(HCC)and other liver cancer(i.e.cholangiocarcinoma or metastasis)is highly challenging and definitive diagnosis still relies on histologic...BACKGROUND Non-invasive differential diagnosis between hepatocellular carcinoma(HCC)and other liver cancer(i.e.cholangiocarcinoma or metastasis)is highly challenging and definitive diagnosis still relies on histological exam.The patterns of enhancement and wash-out of liver nodules can be used to stratify the risk of malignancy only in cirrhotic patients and HCC frequently shows atypical features.Dynamic contrast-enhanced ultrasound(DCEUS)with standardized software could help to overcome these obstacles,providing functional and quantitative parameters and potentially improving accuracy in the evaluation of tumor perfusion.AIM To explore clinical evidence regarding the application of DCEUS in the differential diagnosis of liver nodules.METHODS A comprehensive literature search of clinical studies was performed to identify the parameters of DCEUS that could relate to histological diagnosis.In accordance with the study protocol,a qualitative and quantitative analysis of the evidence was planned.RESULTS Rise time was significantly higher in HCC patients with a standardized mean difference(SMD)of 0.83(95%CI:0.48-1.18).Similarly,other statistically significant parameters were mean transit time local with a SMD of 0.73(95%CI:0.20-1.27),peak enhancement with a SMD of 0.37(95%CI:0.03-0.70),area wash-in area under the curve with a SMD of 0.47(95%CI:0.13-0.81),wash-out area under the curve with a SMD of 0.55(95%CI:0.21-0.89)and wash-in and wash-out area under the curve with SMD of 0.51(95%CI:0.17-0.85).SMD resulted not significant in fall time and wash-in rate,but the latter presented a trend towards greater values in HCC compared to intrahepatic cholangiocarcinoma.CONCLUSION DCEUS could improve non-invasive diagnosis of HCC,leading to less liver biopsy and early treatment.This quantitative analysis needs to be applied on larger cohorts to confirm these preliminary results.展开更多
AIM: To evaluate the ability of the time-signal intensity curve (TIC) of the pancreas obtained from dynamic contrast-enhanced magnetic resonance imaging (MRI) for differentiation of focal pancreatic masses, especially...AIM: To evaluate the ability of the time-signal intensity curve (TIC) of the pancreas obtained from dynamic contrast-enhanced magnetic resonance imaging (MRI) for differentiation of focal pancreatic masses, especially pancreatic carcinoma coexisting with chronic pancreatitis and tumor-forming pancreatitis. METHODS: Forty-eight consecutive patients who underwent surgery for a focal pancreatic mass, including pancreatic ductal carcinoma (n = 33), tumor-forming pancreatitis (n = 8), and islet cell tumor (n = 7), were reviewed. Five pancreatic carcinomas coexisted with longstanding chronic pancreatitis. The pancreatic TICs were obtained from the pancreatic mass and the pancreatic parenchyma both proximal and distal to the mass lesion in each patient, prior to surgery, and were classified into 4 types according to the time to a peak: 25 s and 1, 2, and 3 min after the bolus injection of contrast material, namely, type-Ⅰ, Ⅱ, Ⅲ, and Ⅳ, respectively, and were then compared to the corresponding histological pancreatic conditions. RESULTS: Pancreatic carcinomas demonstrated type-Ⅲ (n = 13) or Ⅳ (n = 20) TIC. Tumor-forming pancreatitis showed type-Ⅱ (n = 5) or Ⅲ (n = 3) TIC. All islet cell tumors revealed type-Ⅰ. The type-Ⅳ TIC was only recognized in pancreatic carcinoma, and the TIC of carcinoma always depicted the slowest rise to a peak among the 3 pancreatic TICs measured in each patient, even in patients with chronic pancreatitis.CONCLUSION: Pancreatic TIC from dynamic MRI provides reliable information for distinguishing pancreatic carcinoma from other pancreatic masses, and may enable us to avoid unnecessary pancreatic surgery and delays in making a correct diagnosis of pancreatic carcinoma, especially, in patients with longstanding chronic pancreatitis.展开更多
Being viewed from the standpoint of whole system, the hunting stability of a heavy-haul railway vehicle on a curved track is investigated in this paper. First, a model to simulate dynamic performance of the heavy-haul...Being viewed from the standpoint of whole system, the hunting stability of a heavy-haul railway vehicle on a curved track is investigated in this paper. First, a model to simulate dynamic performance of the heavy-haul vehicle on the elastic track is developed. Secondly, the reason of the hunting motion is analyzed, and a bifurcation diagram for the vehicle on the curved track is put forward to simulate the nonlinear critical speed. Results show that the hunting motion of the heavy-haul vehicle will appear due to the larger conicity, the initial lateral shift and the wheelset angle of attack. With the hunting motion appearing, the lateral shift and force of the wheelset are changed sharply and periodically with a wave of circa 3.6 m. There is obvious difference in the bifurcation diagram between on a curved track and on a tangent track. Relative to the centerline of the track, each vehicle body on the curved track has two stable cycles. As for the curved track with a radius of 600 m and a superelevation of 55 mm, the nonlinear critical speed of the heavy-haul vehicle is 76.4 km/h.展开更多
An analytical model for dynamic recrystallization (DRX) is studied based on the relative grain size model proposed by Sakai and Jonas, and the characteristic flow behaviors under DRX are analyzed and simulated. Int...An analytical model for dynamic recrystallization (DRX) is studied based on the relative grain size model proposed by Sakai and Jonas, and the characteristic flow behaviors under DRX are analyzed and simulated. Introducing the variation of dynamic grain size and the heterogeneous distribution of disolo- cation densities densities under DRX,a simple method for modeling and simulating DRX processes is developed by using Laplace transformation theory. The results derived from the present model agree well with the experimental results in literatures. This simulation can reproduce a number of features in DRX flow behaviors, for example,single and multiple peak flow behaviors followed by a steady state flow, the transition between them, and so on.展开更多
The short secret key characteristic of elliptic curve cryptosystem (ECC) are integrated with the ( t, n ) threshold method to create a practical threshold group signature scheme characterized by simultaneous signi...The short secret key characteristic of elliptic curve cryptosystem (ECC) are integrated with the ( t, n ) threshold method to create a practical threshold group signature scheme characterized by simultaneous signing. The scheme not only meets the requirements of anonymity and traceability of group signature but also can withstand Tseng and Wang's conspiracy attack. It allows the group manager to add new members and delete old members according to actual application, while the system parameters have a little change. Cryptanalysis result shows that the scheme is efficient and secure.展开更多
The effect of the fastener's failure in a railway track on the dynamic forces produced in the wheel-rail contact is studied using the simulation software VAMPIRE to assess the derailment risk of two different vehicle...The effect of the fastener's failure in a railway track on the dynamic forces produced in the wheel-rail contact is studied using the simulation software VAMPIRE to assess the derailment risk of two different vehicles in two curves with distinct characteristics. First, a 3D-FEM model of a real track is constructed, paying special attention to fasteners, and calibrated with displacement data obtained experimentally during a train passage. This numerical model is subsequently used to determine the track vertical and lateral stiffness. This study evidences that although the track can practically lose its lateral stiffness as a consequence of the failure of 7 consecutive fasteners, the vehicle stability would not be necessarily compromised in the flawed zone. Moreover, the results reveal that the uncompensated acceleration and the distance along which the fasteners are failed play an important role in the dynamic behavior of the vehicle-track system, influencing strongly the risk of derailment.展开更多
In this study,interface shapes of horizontal oil–water two-phase flow are predicted by using Young-Laplace equation model and minimum energy model.Meanwhile,the interface shapes of horizontal oil–water twophase flow...In this study,interface shapes of horizontal oil–water two-phase flow are predicted by using Young-Laplace equation model and minimum energy model.Meanwhile,the interface shapes of horizontal oil–water twophase flow in a 20 mm inner diameter pipe are measured by a novel conductance parallel-wire array probe(CPAP).It is found that,for flow conditions with low water holdup,there is a large deviation between the model-predicted interface shape and the experimentally measured one.Since the variation of pipe wetting characteristics in the process of fluid flow can lead to the changes of the contact angle between the fluid and the pipe wall,the models mentioned above are modified by considering dynamic contact angle.The results indicate that the interface shapes predicted by the modified models present a good consistence with the ones measured by CPAP.展开更多
A new method of detecting the vertical bearing capacity for single-pile with high strain is discussed in this paper. A heavy hammer or a small type of rocket is used to strike the pile top and the detectors are used ...A new method of detecting the vertical bearing capacity for single-pile with high strain is discussed in this paper. A heavy hammer or a small type of rocket is used to strike the pile top and the detectors are used to record vibra- tion graphs. An expression of higher degree of strain (deformation force) is introduced. It is testified theoretically that the displacement, velocity and acceleration cannot be obtained by simple integral acceleration and differential velocity when long displacement and high strain exist, namely when the pile phase generates a whole slip relative to the soil body. That is to say that there are non-linear relations between them. It is educed accordingly that the force P and displacement S are calculated from the amplitude of wave train and (dynamic) P-S curve is drew so as to determine the yield points. Further, a method of determining the vertical bearing capacity for single-pile is dis- cussed. A static load test is utilized to check the result of dynamic test and determine the correlative constants of dynamic-static P(Q)-S curve.展开更多
Most lost-foam casting processes involve non-equilibrium solidification dominated by kinetic factors, while construction of a common dynamic solidification curve is based on pure thermodynamics, not applicable for ana...Most lost-foam casting processes involve non-equilibrium solidification dominated by kinetic factors, while construction of a common dynamic solidification curve is based on pure thermodynamics, not applicable for analyses and research of non-equilibrium macro-solidification processes, and the construction mode can not be applied to nonequilibrium solidification process. In this study, the construction of the dynamic solidification curve(DSC) for the nonequilibrium macro-solidification process included: a modified method to determine the start temperature of primary austenite precipitation(T_(AL)) and the start temperature of eutectic solidification(T_(ES)); double curves method to determine the temperature of the dendrite coherency point of primary austenite(T-(AC)) and the temperature of eutectic cells collision point(T_(EC)); the "technical solidus" method to determine the end temperature of eutectic reaction(T_(EN)). For this purpose, a comparative testing of the non-equilibrium solidification temperature fields in lost-foam casting and green sand mold casting hypoeutectic gray iron was carried out. The thermal analysis results were used to construct the DSCs of both these casting methods under non-equilibrium solidification conditions. The results show that the transformation rate of non-equilibrium solidification in hypoeutectic gray cast iron is greater than that of equilibrium solidification. The eutectic solidification region presents a typical mushy solidification mode. The results also indicate that the primary austenite precipitation zone of lost-foam casting is slightly larger than that of green sand casting. At the same time, the solid fraction(f_s) of the dendrite coherency points in lost-foam casting is greater than that in the green sand casting. Therefore, from these two points, lost-foam casting is more preferable for reduction of shrinkage and mechanical burntin sand tendency of the hypoeutectic gray cast iron. Due to the fact that the solidification process(from the surface to center) at primary austenite growth area in the lost-foam cylinder sample lags behind that in the green sand casting, the mushy solidification tendency of lost-foam casting is greater and the solidification time is longer.展开更多
The relationship between the emission of pollutant and economic growth has attracted a lot of attention in the environmental debate of the recent decades. Based on some theoretical and empirical research on environmen...The relationship between the emission of pollutant and economic growth has attracted a lot of attention in the environmental debate of the recent decades. Based on some theoretical and empirical research on environmental Kuznets curve (EKC), this paper introduces the environmental technical innovation and environmental investment into Salow growth model to discuss the relationship between GDP per capital and the emission of pollutant By the dynamic simulation and parameters analysis, the results of the model indicate: (1) when "green" technical progress and environmental investment are fixed, the relationship between GDP per capital and the emission shows the linear relationship; (2) "green" technical progress can lead to the positive growth rates with a decreasing level of emission, which is compatible with an EKC; (3) the proportion of the environmental investment can lead the different growth rates and level of emission. These results can explain that developing countries are "too poor to be green".展开更多
The DRM (dynamic contact resistance measurement) in high voltage circuit breakers is a manner of evaluating the internal ageing condition of the chamber. DRM is similar to static contact resistance measurement testi...The DRM (dynamic contact resistance measurement) in high voltage circuit breakers is a manner of evaluating the internal ageing condition of the chamber. DRM is similar to static contact resistance measurement testing, but instead of measuring a single value when the breaker contacts are closed (static value), the ohmic resistance is measured at various contact positions, from the beginning of the contact opening until a complete separation of the contacts. The relationship between the contact resistances of the new circuit breaker and the ageing circuit breaker in operation provides subsidy for the evaluation of both the main and arcing contact conditions. This research aims to analyze the correlation between the various levels of degradation of the contacts and the configuration of the DRM curve. This work considers curve samples from new acceleration tests. breaker chamber contacts and different levels of degradation by展开更多
In this paper an integral transform method is used to analyze the dynamic response of simple supported curved beam under single moving load with constant speed, and some parameters are defined. These parameters, such ...In this paper an integral transform method is used to analyze the dynamic response of simple supported curved beam under single moving load with constant speed, and some parameters are defined. These parameters, such as radius of curvature, ratio of stiffness, velocity, warping stiffness, which may influence the response, are also discussed.展开更多
In virtue of reference Cartesian coordinates, geometrical relations of spatial curved structure are presented in orthogonal curvilinear coordinates. Dynamic equations for helical girder are derived by Hamilton princip...In virtue of reference Cartesian coordinates, geometrical relations of spatial curved structure are presented in orthogonal curvilinear coordinates. Dynamic equations for helical girder are derived by Hamilton principle. These equations indicate that four generalized displacements are coupled with each other. When spatial structure degenerates into planar curvilinear structure, two generalized displacements in two perpendicular planes are coupled with each other. Dynamic equations for arbitrary curvilinear structure may be obtained by the method used in this paper.展开更多
A large number of crashes occur on curves even though they account for only a small percentage of a system’s mileage. Excessive speed has been identified as a primary factor in both lane departure and curve-related c...A large number of crashes occur on curves even though they account for only a small percentage of a system’s mileage. Excessive speed has been identified as a primary factor in both lane departure and curve-related crashes. A number of countermeasures have been proposed to reduce driver speeds on curves, which ideally result in successful curve negotiation and fewer crashes. Dynamic speed feedback sign (DSFS) systems are traffic control devices that have been used to reduce vehicle speeds successfully and, subsequently, crashes in applications such as traffic calming on urban roads. DSFS systems show promise, but they have not been fully evaluated for rural curves. To better understand the effectiveness of DSFS systems in reducing crashes on curves, a national field evaluation of DSFS systems on curves on rural two lane roadways was conducted. Two different DSFS systems were selected and placed at 22 sites in seven states. Control sites were also identified. A full Bayes modeling methodology was utilized to develop crash modification factors (CMFs) for several scenarios including total crashes for both directions, total crashes in the direction of the sign, total single-vehicle crashes, and single-vehicle crashes in the direction of the sign. Using quarterly crash frequency as the response variable, crash modification factors were developed and results showed that crashes were 5% to 7% lower after installation of the signs depending on the model.展开更多
This paper summarizes the analytical and experimental dynamic analyses carried out to assess the actual dynamic behaviour of a curved cable-stayed bridge,recently erected in the commercial harbour of Porto Marghera ( ...This paper summarizes the analytical and experimental dynamic analyses carried out to assess the actual dynamic behaviour of a curved cable-stayed bridge,recently erected in the commercial harbour of Porto Marghera ( Venice,Italy). Ambient vibration tests were carried out to determine the dynamic characteristics of the bridge and more than 20 modes were identified in the frequency range 0~10Hz. In the theoretical study,a 3D FE model of the bridge was developed using an integrated CAD-FEA approach; subsequently,the information obtained from the field tests,combined with simple manual tuning,provided a linear elastic model,accurately fitting the modal parameters of the bridge in its present condition.展开更多
After introducing the theories parabola (FDP), half-wave-length length, offset and the maximum of acceleration (LCA), the SI curve, and geometric features of four familiar transition curves (cubic parabola (CP)...After introducing the theories parabola (FDP), half-wave-length length, offset and the maximum of acceleration (LCA), the SI curve, and geometric features of four familiar transition curves (cubic parabola (CP), fifth degree sinusoidal (HS) and sinusoidal (SI)) , these curves are compared under identical conditions of the first derivative of curvature. In terms of the roll acceleration (RA) and the lateral change of in theory, is superior to other transition curves.展开更多
基金Support by the National Natural Science Foundation of China(No.92258303)the Project of Donghai Laboratory(No.DH-2022ZY0005)。
文摘The deep structure,material circulation,and dynamic processes in the Southeast Asia have long been an elusive scientific puzzle due to the lack of systematic scientific observations and recognized theoretical models.Based on the deep seismic tomography using long-period natural earthquake data,in this study,the deep structure and material circulation of the curved subduction system in Southeast Asia was studied,and the dynamic processes since 100 million years ago was reconstructed.It is pointed out that challenges still exist in the precise reconstruction of deep mantle structures of the study area,the influence of multi-stage subduction on deep material exchange and shallow magma activity,as well as the spatiotemporal evolution and coupling mechanism of multi-plate convergence.Future work should focus on high-resolution land-sea joint 3-D seismic tomography imaging of the curved subduction system in the Southeast Asia,combined with geochemical analysis and geodynamic modelling works.
基金Project supported by the National Natural Science Foundation of China (Nos.12072119,12325201,and 52205594)the China National Postdoctoral Program for Innovative Talents (No.BX20220118)。
文摘Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid-structure interaction(FSI)between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes,especially when the pipe is highly flexible and usually undergoes large deformations.In this work,the geometrically exact model(GEM)for a curved cantilevered pipe conveying pulsating fluid is developed based on the extended Hamilton's principle.The stability of the curved pipe with three different subtended angles is examined with the consideration of steady fluid flow.Specific attention is concentrated on the large-deformation resonance of circular pipes conveying pulsating fluid,which is often encountered in practical engineering.By constructing bifurcation diagrams,oscillating shapes,phase portraits,time traces,and Poincarémaps,the dynamic responses of the curved pipe under various system parameters are revealed.The mean flow velocity of the pulsating fluid is chosen to be either subcritical or supercritical.The numerical results show that the curved pipe conveying pulsating fluid can exhibit rich dynamical behaviors,including periodic and quasi-periodic motions.It is also found that the preferred instability type of a cantilevered curved pipe conveying steady fluid is mainly in the flutter of the second mode.For a moderate value of the mass ratio,however,a third-mode flutter may occur,which is quite different from that of a straight pipe system.
基金Supported by National Natural Science Foundation of China(Grant Nos.52005078,U1908231,52075076).
文摘The equipment used in various fields contains an increasing number of parts with curved surfaces of increasing size.Five-axis computer numerical control(CNC)milling is the main parts machining method,while dynamics analysis has always been a research hotspot.The cutting conditions determined by the cutter axis,tool path,and workpiece geometry are complex and changeable,which has made dynamics research a major challenge.For this reason,this paper introduces the innovative idea of applying dimension reduction and mapping to the five-axis machining of curved surfaces,and proposes an efficient dynamics analysis model.To simplify the research object,the cutter position points along the tool path were discretized into inclined plane five-axis machining.The cutter dip angle and feed deflection angle were used to define the spatial position relationship in five-axis machining.These were then taken as the new base variables to construct an abstract two-dimensional space and establish the mapping relationship between the cutter position point and space point sets to further simplify the dimensions of the research object.Based on the in-cut cutting edge solved by the space limitation method,the dynamics of the inclined plane five-axis machining unit were studied,and the results were uniformly stored in the abstract space to produce a database.Finally,the prediction of the milling force and vibration state along the tool path became a data extraction process that significantly improved efficiency.Two experiments were also conducted which proved the accuracy and efficiency of the proposed dynamics analysis model.This study has great potential for the online synchronization of intelligent machining of large surfaces.
基金supported by the National Natural Science Foundation of China (No. 51509211)the China Postdoctoral Science Foundation (No. 2016M602863)+5 种基金the Natural Science Foundation of Shaanxi Province (Nos. 2024JC-YBMS-354 and 2021JLM-51)the Excellent Science and Technology Activities Foundation for Returned Overseas Teachers of Shaanxi Province (No. 2018031)the Social Development Foundation of Shaanxi Province (No. 2015SF260)the Postdoctoral Science Foundation of Shaanxi Province (No. 2017BSHYDZZ50)Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University (No. SZ02306)Xi’an Key Laboratory of Geotechnical and Underground Engineering, Xi’an University of Science and Technology (No. XKLGUEKF21-02)
文摘Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research attention.The traditional method for studying the dynamic strength characteristics of soils is dynamic triaxial testing,and the discrete element simulation of lightweight soils under cyclic load has rarely been considered.To study the meso-mechanisms of the dynamic failure processes of EPS particle lightweight soils,a discrete element numerical model is established using the particle flow code(PFC)software.The contact force,displacement field,and velocity field of lightweight soil under different cumulative compressive strains are studied.The results show that the hysteresis curves of lightweight soil present characteristics of strain accumulation,which reflect the cyclic effects of the dynamic load.When the confining pressure increases,the contact force of the particles also increases.The confining pressure can restrain the motion of the particle system and increase the dynamic strength of the sample.When the confining pressure is held constant,an increase in compressive strain causes minimal change in the contact force between soil particles.However,the contact force between the EPS particles decreases,and their displacement direction points vertically toward the center of the sample.Under an increase in compressive strain,the velocity direction of the particle system changes from a random distribution and points vertically toward the center of the sample.When the compressive strain is 5%,the number of particles deflected in the particle velocity direction increases significantly,and the cumulative rate of deformation in the lightweight soil accelerates.Therefore,it is feasible to use 5%compressive strain as the dynamic strength standard for lightweight soil.Discrete element methods provide a new approach toward the dynamic performance evaluation of lightweight soil subgrades.
文摘BACKGROUND Non-invasive differential diagnosis between hepatocellular carcinoma(HCC)and other liver cancer(i.e.cholangiocarcinoma or metastasis)is highly challenging and definitive diagnosis still relies on histological exam.The patterns of enhancement and wash-out of liver nodules can be used to stratify the risk of malignancy only in cirrhotic patients and HCC frequently shows atypical features.Dynamic contrast-enhanced ultrasound(DCEUS)with standardized software could help to overcome these obstacles,providing functional and quantitative parameters and potentially improving accuracy in the evaluation of tumor perfusion.AIM To explore clinical evidence regarding the application of DCEUS in the differential diagnosis of liver nodules.METHODS A comprehensive literature search of clinical studies was performed to identify the parameters of DCEUS that could relate to histological diagnosis.In accordance with the study protocol,a qualitative and quantitative analysis of the evidence was planned.RESULTS Rise time was significantly higher in HCC patients with a standardized mean difference(SMD)of 0.83(95%CI:0.48-1.18).Similarly,other statistically significant parameters were mean transit time local with a SMD of 0.73(95%CI:0.20-1.27),peak enhancement with a SMD of 0.37(95%CI:0.03-0.70),area wash-in area under the curve with a SMD of 0.47(95%CI:0.13-0.81),wash-out area under the curve with a SMD of 0.55(95%CI:0.21-0.89)and wash-in and wash-out area under the curve with SMD of 0.51(95%CI:0.17-0.85).SMD resulted not significant in fall time and wash-in rate,but the latter presented a trend towards greater values in HCC compared to intrahepatic cholangiocarcinoma.CONCLUSION DCEUS could improve non-invasive diagnosis of HCC,leading to less liver biopsy and early treatment.This quantitative analysis needs to be applied on larger cohorts to confirm these preliminary results.
文摘AIM: To evaluate the ability of the time-signal intensity curve (TIC) of the pancreas obtained from dynamic contrast-enhanced magnetic resonance imaging (MRI) for differentiation of focal pancreatic masses, especially pancreatic carcinoma coexisting with chronic pancreatitis and tumor-forming pancreatitis. METHODS: Forty-eight consecutive patients who underwent surgery for a focal pancreatic mass, including pancreatic ductal carcinoma (n = 33), tumor-forming pancreatitis (n = 8), and islet cell tumor (n = 7), were reviewed. Five pancreatic carcinomas coexisted with longstanding chronic pancreatitis. The pancreatic TICs were obtained from the pancreatic mass and the pancreatic parenchyma both proximal and distal to the mass lesion in each patient, prior to surgery, and were classified into 4 types according to the time to a peak: 25 s and 1, 2, and 3 min after the bolus injection of contrast material, namely, type-Ⅰ, Ⅱ, Ⅲ, and Ⅳ, respectively, and were then compared to the corresponding histological pancreatic conditions. RESULTS: Pancreatic carcinomas demonstrated type-Ⅲ (n = 13) or Ⅳ (n = 20) TIC. Tumor-forming pancreatitis showed type-Ⅱ (n = 5) or Ⅲ (n = 3) TIC. All islet cell tumors revealed type-Ⅰ. The type-Ⅳ TIC was only recognized in pancreatic carcinoma, and the TIC of carcinoma always depicted the slowest rise to a peak among the 3 pancreatic TICs measured in each patient, even in patients with chronic pancreatitis.CONCLUSION: Pancreatic TIC from dynamic MRI provides reliable information for distinguishing pancreatic carcinoma from other pancreatic masses, and may enable us to avoid unnecessary pancreatic surgery and delays in making a correct diagnosis of pancreatic carcinoma, especially, in patients with longstanding chronic pancreatitis.
文摘Being viewed from the standpoint of whole system, the hunting stability of a heavy-haul railway vehicle on a curved track is investigated in this paper. First, a model to simulate dynamic performance of the heavy-haul vehicle on the elastic track is developed. Secondly, the reason of the hunting motion is analyzed, and a bifurcation diagram for the vehicle on the curved track is put forward to simulate the nonlinear critical speed. Results show that the hunting motion of the heavy-haul vehicle will appear due to the larger conicity, the initial lateral shift and the wheelset angle of attack. With the hunting motion appearing, the lateral shift and force of the wheelset are changed sharply and periodically with a wave of circa 3.6 m. There is obvious difference in the bifurcation diagram between on a curved track and on a tangent track. Relative to the centerline of the track, each vehicle body on the curved track has two stable cycles. As for the curved track with a radius of 600 m and a superelevation of 55 mm, the nonlinear critical speed of the heavy-haul vehicle is 76.4 km/h.
文摘An analytical model for dynamic recrystallization (DRX) is studied based on the relative grain size model proposed by Sakai and Jonas, and the characteristic flow behaviors under DRX are analyzed and simulated. Introducing the variation of dynamic grain size and the heterogeneous distribution of disolo- cation densities densities under DRX,a simple method for modeling and simulating DRX processes is developed by using Laplace transformation theory. The results derived from the present model agree well with the experimental results in literatures. This simulation can reproduce a number of features in DRX flow behaviors, for example,single and multiple peak flow behaviors followed by a steady state flow, the transition between them, and so on.
基金The National Natural Science Foundation of China (No60403027)
文摘The short secret key characteristic of elliptic curve cryptosystem (ECC) are integrated with the ( t, n ) threshold method to create a practical threshold group signature scheme characterized by simultaneous signing. The scheme not only meets the requirements of anonymity and traceability of group signature but also can withstand Tseng and Wang's conspiracy attack. It allows the group manager to add new members and delete old members according to actual application, while the system parameters have a little change. Cryptanalysis result shows that the scheme is efficient and secure.
文摘The effect of the fastener's failure in a railway track on the dynamic forces produced in the wheel-rail contact is studied using the simulation software VAMPIRE to assess the derailment risk of two different vehicles in two curves with distinct characteristics. First, a 3D-FEM model of a real track is constructed, paying special attention to fasteners, and calibrated with displacement data obtained experimentally during a train passage. This numerical model is subsequently used to determine the track vertical and lateral stiffness. This study evidences that although the track can practically lose its lateral stiffness as a consequence of the failure of 7 consecutive fasteners, the vehicle stability would not be necessarily compromised in the flawed zone. Moreover, the results reveal that the uncompensated acceleration and the distance along which the fasteners are failed play an important role in the dynamic behavior of the vehicle-track system, influencing strongly the risk of derailment.
基金supported by the National Natural Science Foundation of China(Grant Nos.41974139,41504104,11572220,51527805)Natural Science Foundation of Tianjin,China(19JCYBJC18400)。
文摘In this study,interface shapes of horizontal oil–water two-phase flow are predicted by using Young-Laplace equation model and minimum energy model.Meanwhile,the interface shapes of horizontal oil–water twophase flow in a 20 mm inner diameter pipe are measured by a novel conductance parallel-wire array probe(CPAP).It is found that,for flow conditions with low water holdup,there is a large deviation between the model-predicted interface shape and the experimentally measured one.Since the variation of pipe wetting characteristics in the process of fluid flow can lead to the changes of the contact angle between the fluid and the pipe wall,the models mentioned above are modified by considering dynamic contact angle.The results indicate that the interface shapes predicted by the modified models present a good consistence with the ones measured by CPAP.
文摘A new method of detecting the vertical bearing capacity for single-pile with high strain is discussed in this paper. A heavy hammer or a small type of rocket is used to strike the pile top and the detectors are used to record vibra- tion graphs. An expression of higher degree of strain (deformation force) is introduced. It is testified theoretically that the displacement, velocity and acceleration cannot be obtained by simple integral acceleration and differential velocity when long displacement and high strain exist, namely when the pile phase generates a whole slip relative to the soil body. That is to say that there are non-linear relations between them. It is educed accordingly that the force P and displacement S are calculated from the amplitude of wave train and (dynamic) P-S curve is drew so as to determine the yield points. Further, a method of determining the vertical bearing capacity for single-pile is dis- cussed. A static load test is utilized to check the result of dynamic test and determine the correlative constants of dynamic-static P(Q)-S curve.
基金financially supported by the National Development and Reform Commission(2010-324)
文摘Most lost-foam casting processes involve non-equilibrium solidification dominated by kinetic factors, while construction of a common dynamic solidification curve is based on pure thermodynamics, not applicable for analyses and research of non-equilibrium macro-solidification processes, and the construction mode can not be applied to nonequilibrium solidification process. In this study, the construction of the dynamic solidification curve(DSC) for the nonequilibrium macro-solidification process included: a modified method to determine the start temperature of primary austenite precipitation(T_(AL)) and the start temperature of eutectic solidification(T_(ES)); double curves method to determine the temperature of the dendrite coherency point of primary austenite(T-(AC)) and the temperature of eutectic cells collision point(T_(EC)); the "technical solidus" method to determine the end temperature of eutectic reaction(T_(EN)). For this purpose, a comparative testing of the non-equilibrium solidification temperature fields in lost-foam casting and green sand mold casting hypoeutectic gray iron was carried out. The thermal analysis results were used to construct the DSCs of both these casting methods under non-equilibrium solidification conditions. The results show that the transformation rate of non-equilibrium solidification in hypoeutectic gray cast iron is greater than that of equilibrium solidification. The eutectic solidification region presents a typical mushy solidification mode. The results also indicate that the primary austenite precipitation zone of lost-foam casting is slightly larger than that of green sand casting. At the same time, the solid fraction(f_s) of the dendrite coherency points in lost-foam casting is greater than that in the green sand casting. Therefore, from these two points, lost-foam casting is more preferable for reduction of shrinkage and mechanical burntin sand tendency of the hypoeutectic gray cast iron. Due to the fact that the solidification process(from the surface to center) at primary austenite growth area in the lost-foam cylinder sample lags behind that in the green sand casting, the mushy solidification tendency of lost-foam casting is greater and the solidification time is longer.
文摘The relationship between the emission of pollutant and economic growth has attracted a lot of attention in the environmental debate of the recent decades. Based on some theoretical and empirical research on environmental Kuznets curve (EKC), this paper introduces the environmental technical innovation and environmental investment into Salow growth model to discuss the relationship between GDP per capital and the emission of pollutant By the dynamic simulation and parameters analysis, the results of the model indicate: (1) when "green" technical progress and environmental investment are fixed, the relationship between GDP per capital and the emission shows the linear relationship; (2) "green" technical progress can lead to the positive growth rates with a decreasing level of emission, which is compatible with an EKC; (3) the proportion of the environmental investment can lead the different growth rates and level of emission. These results can explain that developing countries are "too poor to be green".
文摘The DRM (dynamic contact resistance measurement) in high voltage circuit breakers is a manner of evaluating the internal ageing condition of the chamber. DRM is similar to static contact resistance measurement testing, but instead of measuring a single value when the breaker contacts are closed (static value), the ohmic resistance is measured at various contact positions, from the beginning of the contact opening until a complete separation of the contacts. The relationship between the contact resistances of the new circuit breaker and the ageing circuit breaker in operation provides subsidy for the evaluation of both the main and arcing contact conditions. This research aims to analyze the correlation between the various levels of degradation of the contacts and the configuration of the DRM curve. This work considers curve samples from new acceleration tests. breaker chamber contacts and different levels of degradation by
文摘In this paper an integral transform method is used to analyze the dynamic response of simple supported curved beam under single moving load with constant speed, and some parameters are defined. These parameters, such as radius of curvature, ratio of stiffness, velocity, warping stiffness, which may influence the response, are also discussed.
基金the National Natural Science Foundation of China(No.10532070)
文摘In virtue of reference Cartesian coordinates, geometrical relations of spatial curved structure are presented in orthogonal curvilinear coordinates. Dynamic equations for helical girder are derived by Hamilton principle. These equations indicate that four generalized displacements are coupled with each other. When spatial structure degenerates into planar curvilinear structure, two generalized displacements in two perpendicular planes are coupled with each other. Dynamic equations for arbitrary curvilinear structure may be obtained by the method used in this paper.
文摘A large number of crashes occur on curves even though they account for only a small percentage of a system’s mileage. Excessive speed has been identified as a primary factor in both lane departure and curve-related crashes. A number of countermeasures have been proposed to reduce driver speeds on curves, which ideally result in successful curve negotiation and fewer crashes. Dynamic speed feedback sign (DSFS) systems are traffic control devices that have been used to reduce vehicle speeds successfully and, subsequently, crashes in applications such as traffic calming on urban roads. DSFS systems show promise, but they have not been fully evaluated for rural curves. To better understand the effectiveness of DSFS systems in reducing crashes on curves, a national field evaluation of DSFS systems on curves on rural two lane roadways was conducted. Two different DSFS systems were selected and placed at 22 sites in seven states. Control sites were also identified. A full Bayes modeling methodology was utilized to develop crash modification factors (CMFs) for several scenarios including total crashes for both directions, total crashes in the direction of the sign, total single-vehicle crashes, and single-vehicle crashes in the direction of the sign. Using quarterly crash frequency as the response variable, crash modification factors were developed and results showed that crashes were 5% to 7% lower after installation of the signs depending on the model.
基金support provided by the Italian Ministry of University and Research,under the grant PRIN 2006
文摘This paper summarizes the analytical and experimental dynamic analyses carried out to assess the actual dynamic behaviour of a curved cable-stayed bridge,recently erected in the commercial harbour of Porto Marghera ( Venice,Italy). Ambient vibration tests were carried out to determine the dynamic characteristics of the bridge and more than 20 modes were identified in the frequency range 0~10Hz. In the theoretical study,a 3D FE model of the bridge was developed using an integrated CAD-FEA approach; subsequently,the information obtained from the field tests,combined with simple manual tuning,provided a linear elastic model,accurately fitting the modal parameters of the bridge in its present condition.
基金The National Natural Science Foundation of China(No.50878134)the Natural Science Foundation of Hebei Province(No.E2006000394)the Natural Science Foundation of Hebei Education Department(No.2006142)
文摘After introducing the theories parabola (FDP), half-wave-length length, offset and the maximum of acceleration (LCA), the SI curve, and geometric features of four familiar transition curves (cubic parabola (CP), fifth degree sinusoidal (HS) and sinusoidal (SI)) , these curves are compared under identical conditions of the first derivative of curvature. In terms of the roll acceleration (RA) and the lateral change of in theory, is superior to other transition curves.