Stress waves affect the stress field at the crack tip and dominate the dynamic crack propagation.Therefore,evaluating the influence of blasting stress waves on the crack propagation behavior and the mechanical charact...Stress waves affect the stress field at the crack tip and dominate the dynamic crack propagation.Therefore,evaluating the influence of blasting stress waves on the crack propagation behavior and the mechanical characteristics of crack propagation is of great significance for engineering blasting.In this study,ANSYS/LS-DYNA was used for blasting numerical simulation,in which the propagation characteristics of blasting stress waves and stress field distribution at the crack tip were closely observed.Moreover,ABAQUS was applied for simulating the crack propagation path and calculating dynamic stress intensity factors(DSIFs).The universal function was calculated by the fractalmethod.The results show that:the compressive wave causes the crack to close and the reflected tensile wave drives the crack to initiate and propagate,and failure mode is mainly tensile failure.The crack propagation velocity varies with time,which increases at first and then decreases,and the crack arrest occurs due to the attenuation of stress waves and dissipation of the blasting energy.In addition,crack arrest toughness is smaller than the crack initiation toughness,applied pressure waveforms(such as the peak pressure,duration,waveforms,wavelengths and loading rates)have a great influence on DSIFs.It is conducive to our deep understanding or the study of blasting stress waves dominated fracture,suggesting a broad reference for the further development of rock blasting in engineering practice.展开更多
BACKGROUND: Mechanical ventilation is a double-edged sword to acute respiratory distress syndrome (ARDS) including lung injury, and systemic inflammatory response high tidal volumes are thought to increase mortalit...BACKGROUND: Mechanical ventilation is a double-edged sword to acute respiratory distress syndrome (ARDS) including lung injury, and systemic inflammatory response high tidal volumes are thought to increase mortality. The objective of this study is to evaluate the effects of dynamic ventilatory factors on ventilator induced lung injury in a dog model of ARDS induced by hydrochloric acid instillation under volume controlled ventilation and to investigate the relationship between the dynamic factors and ventilator-induced lung injuries (VILI) and to explore its potential mechanisms.METHODS: Thirty-six healthy dogs were randomly divided into a control group and an experimental group. Subjects in the experimental group were then further divided into four groups by different inspiratory stages of flow. Two mL of alveolar fluid was aspirated for detection of IL-8 and TNF-α. Lung tissue specimens were also extracted for total RNA, IL-8 by western blot and observed under an electronic microscope.RESULTS: IL-8 protein expression was significantly higher in group B than in groups A and D. Although the IL-8 protein expression was decreased in group C compared with group B, the difference was not statistically significant. The TNF-a ray degree of group B was significantly higher than that in the other groups (P〈0.01), especially in group C (P〉0.05). The alveolar volume of subjects in group B was significantly smaller, and cavity infiltration and cell autolysis were marked with a significant thicker alveolar septa, disorder of interval structures, and blurring of collagenous and elastic fiber structures. A large number of necrotic debris tissue was observed in group B.CONCLUSION: Mechanical ventilation with a large tidal volume, a high inspiratory flow and a high ventilation frequency can cause significant damage to lung tissue structure. It can significantly increase the expression of TNF-α and IL-8 as well as their mRNA expression. Furthermore, the results of our study showed that small tidal ventilation significantly reduces the release of proinflammatory media. This finding suggests that greater deterioration in lung injury during ARDS is associated with high inspiratory flow and high ventilation rate.展开更多
A dynamic weight function method is presented for dynamic stress intensity factors of circular disk with a radial edge crack under external impulsive pressure. The dynamic stresses in a circular disk are solved under ...A dynamic weight function method is presented for dynamic stress intensity factors of circular disk with a radial edge crack under external impulsive pressure. The dynamic stresses in a circular disk are solved under abrupt step external pressure using the eigenfunction method. The solution consists of a quasi-static solution satisfying inhomogeneous boundary conditions and a dynamic solution satisfying homogeneous boundary conditions. By making use of Fourier- Bessel series expansion, the history and distribution of dynamic stresses in the circular disk are derived. Furthermore, the equation for stress intensity factors under uniform pressure is used as the reference case, the weight function equation for the circular disk containing an edge crack is worked out, and the dynamic stress intensity factor equation for the circular disk containing a radial edge crack can be given. The results indicate that the stress intensity factors under sudden step external pressure vary periodically with time, and the ratio of the maximum value of dynamic stress intensity factors to the corresponding static value is about 2.0.展开更多
Dynamic stress intensity factors are evaluated for thick-walled cylinder with a radial edge crack under internal impulsive pressure. Firstly, the equation for stress intensity factors under static uniform pressure is ...Dynamic stress intensity factors are evaluated for thick-walled cylinder with a radial edge crack under internal impulsive pressure. Firstly, the equation for stress intensity factors under static uniform pressure is used as the reference case, and then the weight function for a thick-walled cylinder containing a radial edge crack can be worked out. Secondly, the dynamic stresses in uncracked thick-walled cylinders are solved under internal impulsive pressure by using mode shape function method. The solution consists of a quasi-static solution satisfying inhomogeneous boundary conditions and a dynamic solution satisfying homogeneous boundary condi- tions, and the history and distribution of dynamic stresses in thick-walled cylinders are derived in terms of Fourier-Bessel series. Finally, the dynamic stress intensity factor equations for thick-walled cylinder containing a radial edge crack sub- jected to internal impulsive pressure are given by dynamic weight function method. The finite element method is utilized to verify the results of numerical examples, showing the validity and feasibility of the proposed method.展开更多
We investigate how three-body interactions affect the elementary excitations and dynamic structure factor of a Bose- Einstein condensate trapped in a one-dimensional optical lattice. To this end, we numerically solve ...We investigate how three-body interactions affect the elementary excitations and dynamic structure factor of a Bose- Einstein condensate trapped in a one-dimensional optical lattice. To this end, we numerically solve the Gross-Pitaevskii equation and then the corresponding Bogoliubov equations. Our results show that three-body interactions can change both the Bogoliubov band structure and the dynamical structure factor dramatically, especially in the case of the two-body interaction being relatively small. Furthermore, when the optical lattice is strong enough, the analytical results, combined with the sum-rule approach, help us to understand that: the effects of three-body interactions on the static structure Ihctor can be significantly amplified by an optical lattice. Our predictions should be observable within the current Bragg spectroscopy experiment.展开更多
A new formula is obtained to calculate dynamic stress intensity factors of the three-point bending specimen containing a single edge crack in this study. Firstly, the weight function for three-point bending specimen c...A new formula is obtained to calculate dynamic stress intensity factors of the three-point bending specimen containing a single edge crack in this study. Firstly, the weight function for three-point bending specimen containing a single edge crack is derived from a general weight function form and two reference stress intensity factors, the coefficients of the weight function are given. Secondly, the history and distribution of dynamic stresses in uncracked three-point bending specimen are derived based on the vibration theory. Finally~ the dynamic stress intensity factors equations for three-pointing specimen with a single edge crack subjected to impact loadings are obtained by the weight function method. The obtained formula is verified by the comparison with the numerical results of the finite element method (FEM). Good agreements have been achieved. The law of dynamic stress intensity factors of the three-point bending specimen under impact loadings varing with crack depths and loading rates is studied.展开更多
In order to determine the dynamic stress intensity factors(DSIFs)for a single edge crack at the center hole of a finite plate under a compressive step loading parallel to the crack,the finite element method was employ...In order to determine the dynamic stress intensity factors(DSIFs)for a single edge crack at the center hole of a finite plate under a compressive step loading parallel to the crack,the finite element method was employed to solve the cracked plate problem.The square-root stress singularity around the crack tip was simulated by quarter point singular elements collapsed by 8-node two-dimensional isoparametric elements.The DSIFs with and without considering crack face contact situations were evaluated by using the displacement correlation technique,and the influence of contact interaction between crack surfaces on DSIFs was investigated.The numerical results show that if the contact interaction between crack surfaces is ignored,the negative mode I DSIFs may be obtained and a physically impossible interpenetration or overlap of the crack surfaces will occur.Thus the crack face contact has a significant influence on the mode I DSIFs.展开更多
The present paper is addressed to the finite element method combined with dynamic photoelastic analysis of propagating cracks, that is, on the basis of [1] by Chien Wei-zang, finite elements which incorporate the prop...The present paper is addressed to the finite element method combined with dynamic photoelastic analysis of propagating cracks, that is, on the basis of [1] by Chien Wei-zang, finite elements which incorporate the propagating crack-tip singularity intrinsic to two-dimensional elasticity are employed. THe relation between crack opening length and time step obtained from dynamic photoelaslie analysis is used as a definite condition for solving the dynamic equations and simulating the crack propagations as well As an example, the impact response of dynamie-bending-test specimen is investigated and the dynamic stress-intensity factor obtained from the mentioned finite element analysis and dynamic photoelasticity is in reasonable agreement with each other.展开更多
China's mainstream human rights theory has undergone tremendous changes since the reform-and-opening scheme was kicked off in the early 1980s. "Human rights," which used to be seen as a concept of capitalist ideolo...China's mainstream human rights theory has undergone tremendous changes since the reform-and-opening scheme was kicked off in the early 1980s. "Human rights," which used to be seen as a concept of capitalist ideology, is now an important part of the Chinese system of socialist values.展开更多
As a green environmentally-friendly material,rubberised concrete(Ru C),which has the characteristics of low elastic modulus,large deformation capacity,high damping,good energy dissipation and good crack resistance,has...As a green environmentally-friendly material,rubberised concrete(Ru C),which has the characteristics of low elastic modulus,large deformation capacity,high damping,good energy dissipation and good crack resistance,has attracted extensive attention and research in the civil engineering discipline.However,most of existing studies are based on experimental tests on Ru C material properties,and there has been no numerical study based on meso-scale modelling of Ru C yet.To more comprehensively investigate the Ru C dynamic material properties without conducting intensive experimental tests,this study developed a high-fidelity meso-scale model considering coarse and fine aggregates and rubber crumbs to numerically investigate the mechanical properties of rubberised concrete under different strain rates.The meso-scale model was verified against both quasi-static compressive testing data and Split Hopkinson Pressure Bar(SHPB)dynamic testing data.Using the verified numerical model,the dynamic properties of rubberised concrete with various rubber content(0%-30%)under different strain rates were studied.The numerical results show that the developed meso-scale model can use to predict the static and dynamic properties of rubberised concrete with high accuracy.The dynamic compressive strength of the rubberised concrete increases with the increment of the strain rate,and the strain rate sensitivity increases with the rubber content ranging from 0 to 30%.Based on intensive numerical simulation data,empirical DIFs is used as a function of strain rate and rubber content to predict the dynamic strength of rubberised concrete.展开更多
This work proposes a numerical investigation on the effects of damage on the structural response of Reinforced Concrete(RC)bridge structures commonly adopted in highway and railway networks.An effective three-dimensio...This work proposes a numerical investigation on the effects of damage on the structural response of Reinforced Concrete(RC)bridge structures commonly adopted in highway and railway networks.An effective three-dimensional FE-based numerical model is developed to analyze the bridge’s structural response under several damage scenarios,including the effects of moving vehicle loads.In particular,the longitudinal and transversal beams are modeled through solid finite elements,while horizontal slabs are made of shell elements.Damage phenomena are also incorporated in the numerical model according to a smeared approach consistent with Continuum Damage Mechanics(CDM).In such a context,the proposed method utilizes an advanced and efficient computational strategy for reproducing Vehicle-Bridge Interaction(VBI)effects based on a moving mesh technique consistent with the Arbitrary Lagrangian-Eulerian(ALE)formulation.The proposed model adopts a moving mesh interface for tracing the positions of the contact points between the vehicle’s wheels and the bridge slabs.Such modeling strategy avoids using extremely refined discretization for structural members,thus drastically reducing computational efforts.Vibrational analyses in terms of damage scenarios are presented to verify how the presence of damage affects the natural frequencies of the structural system.In addition,a comprehensive investigation regarding the response of the bridge under moving vehicles is developed,also providing results in terms of Dynamic Amplification Factor(DAFs)for typical design bridge variables.展开更多
Corporate social responsibility is the inevitable requirement for the survival and development of enterprises in modern society,as well as the basic guarantee for the sustainable development of economy and society.In ...Corporate social responsibility is the inevitable requirement for the survival and development of enterprises in modern society,as well as the basic guarantee for the sustainable development of economy and society.In order to analyze the driving factors of corporate social responsibility from both internal and external aspects,the dynamic model of corporate social responsibility was constructed,and the driving strategies of corporate social responsibility were also suggested.The driving factors of corporate social responsibility include not only the external constraints of policies,regulations and stakeholders,but also the internal requirements of the sustainable development of enterprises.Only when the external driving force is transformed into the spontaneous and conscious responsibility behavior of the enterprise,can the enterprise achieve its due effect.Moreover,in order to better fulfill the social responsibility,enterprise should build a management system of social responsibility,enhance the awareness of social responsibility,and promote the effective implementation of social responsibility projects.The relevant department should strengthen the all-round supervision of corporate social responsibility,and further improve the policies,laws and regulations related to social responsibility.Enterprises should strengthen communication with stakeholders,actively disclose social responsibility information,and constantly improve social responsibility behavior.By implementing social responsibility,enterprise can improve its business environment,enhance corporate brand image and core competitiveness,and promote the sustainable development of economy and society.展开更多
Based on the data from the China National Meteorological Station and the fifth-generation reanalysis data of the European Center for Medium-Range Weather Forecasts, we investigated and examined the precipitation, circ...Based on the data from the China National Meteorological Station and the fifth-generation reanalysis data of the European Center for Medium-Range Weather Forecasts, we investigated and examined the precipitation, circulation, and dynamic conditions of the rainstorm in Henan in July 2021. The results show that: 1) This precipitation is of very heavy rainfall level, beginning on the 19<sup>th</sup> and lasting until the 21<sup>st</sup>, with a 3-hour cumulative precipitation of more than 200 mm at Zhengzhou station at 19:00 on the 20<sup>th</sup>. The major focus of this precipitation is in Zhengzhou, Henan Province, and it also radiates to Jiaozuo, Xinxiang, Kaifeng, Xuchang, Pingdingshan, Luoyang, Luohe, and other places. 2) The Western Pacific Subtropical High (WPSH), typhoons “In-Fa” and “Cempaka”, as well as the less dynamic strengthening of the Eurasian trough ridge structure, all contributed to the short-term maintenance of the favorable large-scale circulation background and water vapor conditions for this rainstorm in Henan. 3) The vertical structure of low-level convergence and high-level dispersion near Zhengzhou, together with the topographic blocking and lifting impact, produced favorable dynamic lifting conditions for this rainstorm.展开更多
The dynamic fracture behavior of the three-point bending beam with double deformity inclusions under impact loading is studied by using digital high-speed photography in combination with the transmission-type dynamic ...The dynamic fracture behavior of the three-point bending beam with double deformity inclusions under impact loading is studied by using digital high-speed photography in combination with the transmission-type dynamic caustic method. The experimental results indicate that the fluctuation of crack propagation velocity v first increases and then decreases in the crack propagation process. During the process of crack propagating into the inclusion area, the fracture resistance effect of the circular inclusion is the most significant and the effects of triangular and square inclusions are less obvious. The stress intensity factor near the crack tip increases during the propagation process and reaches its maximum value when the crack tip is close to the inclusions. The crack tip’s dynamic stress intensity factor ( DSIF) decreases when the crack exceeds the middle area of the double inclusions. These results provide an experimental basis and scientific foundation to strengthen the evaluation and fracture analysis of the structure containing deformity inclusions.展开更多
The approach combining the dynamic caustics method with high-speed photography technology is used to study the interaction between propagating cracks and three kinds of deformity inclusions( cylinder inclusion, quadr...The approach combining the dynamic caustics method with high-speed photography technology is used to study the interaction between propagating cracks and three kinds of deformity inclusions( cylinder inclusion, quadruple inclusion and triangular inclusion) under lowvelocity impact loading. By recording the caustic spots of crack tips at different moments during the crack propagation, the variation regulations of dynamic stress intensity factors( DSIF) and crack growth velocity with respect to time are obtained. The experimental results showthat the resistance effects to crack growth are varied with different shapes of inclusions in specimens, and the quadruple inclusion's effect is more apparent. The distortion degree of caustic spots is affected by the shapes of inclusions as well, and the situation is more serious for cylinder and quadruple inclusions. The overall values of DSIFs of triangular inclusion specimen are greater than the others, and the crack growth velocities, characteristic sizes and DSIFs showprocesses of fluctuations because of the disturbance of reflection waves in specimens. The results provide an experimental basis for the analysis of strength and impact-resistance ability in structures with deformity inclusions.展开更多
A newnumerical method based on vector form intrinsic finite element(VFIFE) is proposed to simulate the integral lifting process of steel structures. First, in order to verify the validity of the VFIFE method, taking...A newnumerical method based on vector form intrinsic finite element(VFIFE) is proposed to simulate the integral lifting process of steel structures. First, in order to verify the validity of the VFIFE method, taking the steel gallery between the integrated building and the attached building of Nanjing M obile Communication Buildings for example, the static analysis was carried out and the corresponding results were compared with the results achieved by the traditional finite element method. Then, according to the characteristics of dynamic construction of steel structure integral lifting, the tension cable element was employed to simulate the behavior of dynamic construction. The VFIFE method avoids the iterative solution of the stiffness matrix and the singularity problems. Therefore, it is simple to simulate the complete process of steel structure lifting construction.Finally, by using the VFIFE, the displacement and internal force time history curves of the steel structures under different lifting speeds are obtained. The results show that the lifting speed has influence on the lifting force, the internal force, and the displacement of the structure. In the case of normal lifting speed, the dynamic magnification factor of 1. 5 is safe and reasonable for practical application.展开更多
The reflected optical caustics method is applied to study dynamic fracture problems in hardened cement paste. First both the unreinforced cement paste and the glass fibres reinforced cement paste specimens were fabric...The reflected optical caustics method is applied to study dynamic fracture problems in hardened cement paste. First both the unreinforced cement paste and the glass fibres reinforced cement paste specimens were fabricated and the reflective coating on the surface of the specimen was prepared. Secondly the crack path and the shadow spot patterns during the crack propagation process for the two specimens were recorded by using a multi-spark high speed camera.Thirdly some dynamic parameters of two cement paste specimens including crack onset time the dynamic stress intensity factor and crack growth velocity were determined and analyzed comparatively.This indicates that the glass fibres can improve the fracture resistance and delay fracture time.These results will play an important role in evaluating the dynamic fracture properties of cement paste.展开更多
The dynamic stress intensity factor (DSIF) and the scattering of SH wave by circle canyon and crack are studied with Green's function. In order to solve the problem, a suitable Green's function is constructed...The dynamic stress intensity factor (DSIF) and the scattering of SH wave by circle canyon and crack are studied with Green's function. In order to solve the problem, a suitable Green's function is constructed first, which is the solution of displacement fields for elastic half space with circle canyon under output plane harmonic line loading at horizontal surface. Then the integral equation for determining the unknown forces in the problem can be changed into the algebraic one and solved numerically so that crack DSIF can be determined. Last when the medium parameters are altered, the influence on the crack DSIF is discussed partially with the displacement between circle canyon and crack.展开更多
Based on the analysis of nonlinear geometric characteristics of the suspension systems and tires, a 3D nonlinear dynamic model of a typical heavy truck is established. The impact factors of dynamic tire loads, includi...Based on the analysis of nonlinear geometric characteristics of the suspension systems and tires, a 3D nonlinear dynamic model of a typical heavy truck is established. The impact factors of dynamic tire loads, including the dynamic load stress factors, and the maximal and the minimal vertical dynamic load factors, are used to evaluate the dynamic interaction between heavy vehicles and roads under the condition of random road surface roughness. Matlab/Simulink is used to simulate the nonlinear dynamic system and calculate the impact factors. The effects of different road surface conditions on the safety of vehicle movement and the durability of parts of a vehicle are analyzed, as well as the effects of different structural parameters and different vehicle speeds on road surfaces. The study results provide both the warning limits of road surface roughness and the limits of corresponding dynamic parameters for the 5-axle heavy truck.展开更多
基金This researchwas supported by the National Natural Science Foundation of China(No.52227805)the Fundamental Research Funds for Central Universities(No.2022JCCXLJ01).Awards were granted to the author Liyun Yang.
文摘Stress waves affect the stress field at the crack tip and dominate the dynamic crack propagation.Therefore,evaluating the influence of blasting stress waves on the crack propagation behavior and the mechanical characteristics of crack propagation is of great significance for engineering blasting.In this study,ANSYS/LS-DYNA was used for blasting numerical simulation,in which the propagation characteristics of blasting stress waves and stress field distribution at the crack tip were closely observed.Moreover,ABAQUS was applied for simulating the crack propagation path and calculating dynamic stress intensity factors(DSIFs).The universal function was calculated by the fractalmethod.The results show that:the compressive wave causes the crack to close and the reflected tensile wave drives the crack to initiate and propagate,and failure mode is mainly tensile failure.The crack propagation velocity varies with time,which increases at first and then decreases,and the crack arrest occurs due to the attenuation of stress waves and dissipation of the blasting energy.In addition,crack arrest toughness is smaller than the crack initiation toughness,applied pressure waveforms(such as the peak pressure,duration,waveforms,wavelengths and loading rates)have a great influence on DSIFs.It is conducive to our deep understanding or the study of blasting stress waves dominated fracture,suggesting a broad reference for the further development of rock blasting in engineering practice.
基金supported by grants from the Shanghai Health Bureau issues(2007102)
文摘BACKGROUND: Mechanical ventilation is a double-edged sword to acute respiratory distress syndrome (ARDS) including lung injury, and systemic inflammatory response high tidal volumes are thought to increase mortality. The objective of this study is to evaluate the effects of dynamic ventilatory factors on ventilator induced lung injury in a dog model of ARDS induced by hydrochloric acid instillation under volume controlled ventilation and to investigate the relationship between the dynamic factors and ventilator-induced lung injuries (VILI) and to explore its potential mechanisms.METHODS: Thirty-six healthy dogs were randomly divided into a control group and an experimental group. Subjects in the experimental group were then further divided into four groups by different inspiratory stages of flow. Two mL of alveolar fluid was aspirated for detection of IL-8 and TNF-α. Lung tissue specimens were also extracted for total RNA, IL-8 by western blot and observed under an electronic microscope.RESULTS: IL-8 protein expression was significantly higher in group B than in groups A and D. Although the IL-8 protein expression was decreased in group C compared with group B, the difference was not statistically significant. The TNF-a ray degree of group B was significantly higher than that in the other groups (P〈0.01), especially in group C (P〉0.05). The alveolar volume of subjects in group B was significantly smaller, and cavity infiltration and cell autolysis were marked with a significant thicker alveolar septa, disorder of interval structures, and blurring of collagenous and elastic fiber structures. A large number of necrotic debris tissue was observed in group B.CONCLUSION: Mechanical ventilation with a large tidal volume, a high inspiratory flow and a high ventilation frequency can cause significant damage to lung tissue structure. It can significantly increase the expression of TNF-α and IL-8 as well as their mRNA expression. Furthermore, the results of our study showed that small tidal ventilation significantly reduces the release of proinflammatory media. This finding suggests that greater deterioration in lung injury during ARDS is associated with high inspiratory flow and high ventilation rate.
文摘A dynamic weight function method is presented for dynamic stress intensity factors of circular disk with a radial edge crack under external impulsive pressure. The dynamic stresses in a circular disk are solved under abrupt step external pressure using the eigenfunction method. The solution consists of a quasi-static solution satisfying inhomogeneous boundary conditions and a dynamic solution satisfying homogeneous boundary conditions. By making use of Fourier- Bessel series expansion, the history and distribution of dynamic stresses in the circular disk are derived. Furthermore, the equation for stress intensity factors under uniform pressure is used as the reference case, the weight function equation for the circular disk containing an edge crack is worked out, and the dynamic stress intensity factor equation for the circular disk containing a radial edge crack can be given. The results indicate that the stress intensity factors under sudden step external pressure vary periodically with time, and the ratio of the maximum value of dynamic stress intensity factors to the corresponding static value is about 2.0.
基金supported by the China Aviation Industry Corporation I Program (ATPD-1104-02).
文摘Dynamic stress intensity factors are evaluated for thick-walled cylinder with a radial edge crack under internal impulsive pressure. Firstly, the equation for stress intensity factors under static uniform pressure is used as the reference case, and then the weight function for a thick-walled cylinder containing a radial edge crack can be worked out. Secondly, the dynamic stresses in uncracked thick-walled cylinders are solved under internal impulsive pressure by using mode shape function method. The solution consists of a quasi-static solution satisfying inhomogeneous boundary conditions and a dynamic solution satisfying homogeneous boundary condi- tions, and the history and distribution of dynamic stresses in thick-walled cylinders are derived in terms of Fourier-Bessel series. Finally, the dynamic stress intensity factor equations for thick-walled cylinder containing a radial edge crack sub- jected to internal impulsive pressure are given by dynamic weight function method. The finite element method is utilized to verify the results of numerical examples, showing the validity and feasibility of the proposed method.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11004200 and 11274315)
文摘We investigate how three-body interactions affect the elementary excitations and dynamic structure factor of a Bose- Einstein condensate trapped in a one-dimensional optical lattice. To this end, we numerically solve the Gross-Pitaevskii equation and then the corresponding Bogoliubov equations. Our results show that three-body interactions can change both the Bogoliubov band structure and the dynamical structure factor dramatically, especially in the case of the two-body interaction being relatively small. Furthermore, when the optical lattice is strong enough, the analytical results, combined with the sum-rule approach, help us to understand that: the effects of three-body interactions on the static structure Ihctor can be significantly amplified by an optical lattice. Our predictions should be observable within the current Bragg spectroscopy experiment.
基金supported by the China Aviation Industry Corporation I Program (No.ATPD-1104-02)the Science Foundation of Nanjing University of Science and Technology (No.2010GJPY026)
文摘A new formula is obtained to calculate dynamic stress intensity factors of the three-point bending specimen containing a single edge crack in this study. Firstly, the weight function for three-point bending specimen containing a single edge crack is derived from a general weight function form and two reference stress intensity factors, the coefficients of the weight function are given. Secondly, the history and distribution of dynamic stresses in uncracked three-point bending specimen are derived based on the vibration theory. Finally~ the dynamic stress intensity factors equations for three-pointing specimen with a single edge crack subjected to impact loadings are obtained by the weight function method. The obtained formula is verified by the comparison with the numerical results of the finite element method (FEM). Good agreements have been achieved. The law of dynamic stress intensity factors of the three-point bending specimen under impact loadings varing with crack depths and loading rates is studied.
基金Sponsored by the National Natural Science Foundation of China(Grant No.10272036)
文摘In order to determine the dynamic stress intensity factors(DSIFs)for a single edge crack at the center hole of a finite plate under a compressive step loading parallel to the crack,the finite element method was employed to solve the cracked plate problem.The square-root stress singularity around the crack tip was simulated by quarter point singular elements collapsed by 8-node two-dimensional isoparametric elements.The DSIFs with and without considering crack face contact situations were evaluated by using the displacement correlation technique,and the influence of contact interaction between crack surfaces on DSIFs was investigated.The numerical results show that if the contact interaction between crack surfaces is ignored,the negative mode I DSIFs may be obtained and a physically impossible interpenetration or overlap of the crack surfaces will occur.Thus the crack face contact has a significant influence on the mode I DSIFs.
文摘The present paper is addressed to the finite element method combined with dynamic photoelastic analysis of propagating cracks, that is, on the basis of [1] by Chien Wei-zang, finite elements which incorporate the propagating crack-tip singularity intrinsic to two-dimensional elasticity are employed. THe relation between crack opening length and time step obtained from dynamic photoelaslie analysis is used as a definite condition for solving the dynamic equations and simulating the crack propagations as well As an example, the impact response of dynamie-bending-test specimen is investigated and the dynamic stress-intensity factor obtained from the mentioned finite element analysis and dynamic photoelasticity is in reasonable agreement with each other.
文摘China's mainstream human rights theory has undergone tremendous changes since the reform-and-opening scheme was kicked off in the early 1980s. "Human rights," which used to be seen as a concept of capitalist ideology, is now an important part of the Chinese system of socialist values.
文摘As a green environmentally-friendly material,rubberised concrete(Ru C),which has the characteristics of low elastic modulus,large deformation capacity,high damping,good energy dissipation and good crack resistance,has attracted extensive attention and research in the civil engineering discipline.However,most of existing studies are based on experimental tests on Ru C material properties,and there has been no numerical study based on meso-scale modelling of Ru C yet.To more comprehensively investigate the Ru C dynamic material properties without conducting intensive experimental tests,this study developed a high-fidelity meso-scale model considering coarse and fine aggregates and rubber crumbs to numerically investigate the mechanical properties of rubberised concrete under different strain rates.The meso-scale model was verified against both quasi-static compressive testing data and Split Hopkinson Pressure Bar(SHPB)dynamic testing data.Using the verified numerical model,the dynamic properties of rubberised concrete with various rubber content(0%-30%)under different strain rates were studied.The numerical results show that the developed meso-scale model can use to predict the static and dynamic properties of rubberised concrete with high accuracy.The dynamic compressive strength of the rubberised concrete increases with the increment of the strain rate,and the strain rate sensitivity increases with the rubber content ranging from 0 to 30%.Based on intensive numerical simulation data,empirical DIFs is used as a function of strain rate and rubber content to predict the dynamic strength of rubberised concrete.
基金supported by Ministry of University and Research(MUR)through the Research Grant“PRIN 2020 No.2020EBLPLS”“Programma Operativo Nazionale(PON)2014-2020”.
文摘This work proposes a numerical investigation on the effects of damage on the structural response of Reinforced Concrete(RC)bridge structures commonly adopted in highway and railway networks.An effective three-dimensional FE-based numerical model is developed to analyze the bridge’s structural response under several damage scenarios,including the effects of moving vehicle loads.In particular,the longitudinal and transversal beams are modeled through solid finite elements,while horizontal slabs are made of shell elements.Damage phenomena are also incorporated in the numerical model according to a smeared approach consistent with Continuum Damage Mechanics(CDM).In such a context,the proposed method utilizes an advanced and efficient computational strategy for reproducing Vehicle-Bridge Interaction(VBI)effects based on a moving mesh technique consistent with the Arbitrary Lagrangian-Eulerian(ALE)formulation.The proposed model adopts a moving mesh interface for tracing the positions of the contact points between the vehicle’s wheels and the bridge slabs.Such modeling strategy avoids using extremely refined discretization for structural members,thus drastically reducing computational efforts.Vibrational analyses in terms of damage scenarios are presented to verify how the presence of damage affects the natural frequencies of the structural system.In addition,a comprehensive investigation regarding the response of the bridge under moving vehicles is developed,also providing results in terms of Dynamic Amplification Factor(DAFs)for typical design bridge variables.
文摘Corporate social responsibility is the inevitable requirement for the survival and development of enterprises in modern society,as well as the basic guarantee for the sustainable development of economy and society.In order to analyze the driving factors of corporate social responsibility from both internal and external aspects,the dynamic model of corporate social responsibility was constructed,and the driving strategies of corporate social responsibility were also suggested.The driving factors of corporate social responsibility include not only the external constraints of policies,regulations and stakeholders,but also the internal requirements of the sustainable development of enterprises.Only when the external driving force is transformed into the spontaneous and conscious responsibility behavior of the enterprise,can the enterprise achieve its due effect.Moreover,in order to better fulfill the social responsibility,enterprise should build a management system of social responsibility,enhance the awareness of social responsibility,and promote the effective implementation of social responsibility projects.The relevant department should strengthen the all-round supervision of corporate social responsibility,and further improve the policies,laws and regulations related to social responsibility.Enterprises should strengthen communication with stakeholders,actively disclose social responsibility information,and constantly improve social responsibility behavior.By implementing social responsibility,enterprise can improve its business environment,enhance corporate brand image and core competitiveness,and promote the sustainable development of economy and society.
文摘Based on the data from the China National Meteorological Station and the fifth-generation reanalysis data of the European Center for Medium-Range Weather Forecasts, we investigated and examined the precipitation, circulation, and dynamic conditions of the rainstorm in Henan in July 2021. The results show that: 1) This precipitation is of very heavy rainfall level, beginning on the 19<sup>th</sup> and lasting until the 21<sup>st</sup>, with a 3-hour cumulative precipitation of more than 200 mm at Zhengzhou station at 19:00 on the 20<sup>th</sup>. The major focus of this precipitation is in Zhengzhou, Henan Province, and it also radiates to Jiaozuo, Xinxiang, Kaifeng, Xuchang, Pingdingshan, Luoyang, Luohe, and other places. 2) The Western Pacific Subtropical High (WPSH), typhoons “In-Fa” and “Cempaka”, as well as the less dynamic strengthening of the Eurasian trough ridge structure, all contributed to the short-term maintenance of the favorable large-scale circulation background and water vapor conditions for this rainstorm in Henan. 3) The vertical structure of low-level convergence and high-level dispersion near Zhengzhou, together with the topographic blocking and lifting impact, produced favorable dynamic lifting conditions for this rainstorm.
基金The National Basic Research Program of China(973 Program)(No.2011CB606105)the National Natural Science Foundation of China(No.51374210,51134025)
文摘The dynamic fracture behavior of the three-point bending beam with double deformity inclusions under impact loading is studied by using digital high-speed photography in combination with the transmission-type dynamic caustic method. The experimental results indicate that the fluctuation of crack propagation velocity v first increases and then decreases in the crack propagation process. During the process of crack propagating into the inclusion area, the fracture resistance effect of the circular inclusion is the most significant and the effects of triangular and square inclusions are less obvious. The stress intensity factor near the crack tip increases during the propagation process and reaches its maximum value when the crack tip is close to the inclusions. The crack tip’s dynamic stress intensity factor ( DSIF) decreases when the crack exceeds the middle area of the double inclusions. These results provide an experimental basis and scientific foundation to strengthen the evaluation and fracture analysis of the structure containing deformity inclusions.
基金The National Natural Science Foundation of China(No.51374210,51134025)the 111 Project(No.B14006)
文摘The approach combining the dynamic caustics method with high-speed photography technology is used to study the interaction between propagating cracks and three kinds of deformity inclusions( cylinder inclusion, quadruple inclusion and triangular inclusion) under lowvelocity impact loading. By recording the caustic spots of crack tips at different moments during the crack propagation, the variation regulations of dynamic stress intensity factors( DSIF) and crack growth velocity with respect to time are obtained. The experimental results showthat the resistance effects to crack growth are varied with different shapes of inclusions in specimens, and the quadruple inclusion's effect is more apparent. The distortion degree of caustic spots is affected by the shapes of inclusions as well, and the situation is more serious for cylinder and quadruple inclusions. The overall values of DSIFs of triangular inclusion specimen are greater than the others, and the crack growth velocities, characteristic sizes and DSIFs showprocesses of fluctuations because of the disturbance of reflection waves in specimens. The results provide an experimental basis for the analysis of strength and impact-resistance ability in structures with deformity inclusions.
基金The National Natural Science Foundation of China(No.51308105)
文摘A newnumerical method based on vector form intrinsic finite element(VFIFE) is proposed to simulate the integral lifting process of steel structures. First, in order to verify the validity of the VFIFE method, taking the steel gallery between the integrated building and the attached building of Nanjing M obile Communication Buildings for example, the static analysis was carried out and the corresponding results were compared with the results achieved by the traditional finite element method. Then, according to the characteristics of dynamic construction of steel structure integral lifting, the tension cable element was employed to simulate the behavior of dynamic construction. The VFIFE method avoids the iterative solution of the stiffness matrix and the singularity problems. Therefore, it is simple to simulate the complete process of steel structure lifting construction.Finally, by using the VFIFE, the displacement and internal force time history curves of the steel structures under different lifting speeds are obtained. The results show that the lifting speed has influence on the lifting force, the internal force, and the displacement of the structure. In the case of normal lifting speed, the dynamic magnification factor of 1. 5 is safe and reasonable for practical application.
基金The Ph.D.Programs Foundation of Ministry of Education of China(No.20120023120020)the National Natural Science Foundation of China(No.51404273)
文摘The reflected optical caustics method is applied to study dynamic fracture problems in hardened cement paste. First both the unreinforced cement paste and the glass fibres reinforced cement paste specimens were fabricated and the reflective coating on the surface of the specimen was prepared. Secondly the crack path and the shadow spot patterns during the crack propagation process for the two specimens were recorded by using a multi-spark high speed camera.Thirdly some dynamic parameters of two cement paste specimens including crack onset time the dynamic stress intensity factor and crack growth velocity were determined and analyzed comparatively.This indicates that the glass fibres can improve the fracture resistance and delay fracture time.These results will play an important role in evaluating the dynamic fracture properties of cement paste.
文摘The dynamic stress intensity factor (DSIF) and the scattering of SH wave by circle canyon and crack are studied with Green's function. In order to solve the problem, a suitable Green's function is constructed first, which is the solution of displacement fields for elastic half space with circle canyon under output plane harmonic line loading at horizontal surface. Then the integral equation for determining the unknown forces in the problem can be changed into the algebraic one and solved numerically so that crack DSIF can be determined. Last when the medium parameters are altered, the influence on the crack DSIF is discussed partially with the displacement between circle canyon and crack.
基金The Science and Technology Support Program of Jiangsu Province(No.BE201047)
文摘Based on the analysis of nonlinear geometric characteristics of the suspension systems and tires, a 3D nonlinear dynamic model of a typical heavy truck is established. The impact factors of dynamic tire loads, including the dynamic load stress factors, and the maximal and the minimal vertical dynamic load factors, are used to evaluate the dynamic interaction between heavy vehicles and roads under the condition of random road surface roughness. Matlab/Simulink is used to simulate the nonlinear dynamic system and calculate the impact factors. The effects of different road surface conditions on the safety of vehicle movement and the durability of parts of a vehicle are analyzed, as well as the effects of different structural parameters and different vehicle speeds on road surfaces. The study results provide both the warning limits of road surface roughness and the limits of corresponding dynamic parameters for the 5-axle heavy truck.