Layered rock mass of significant strength changes for adjacent layers is frequently observed in underground excavation,and dynamic loading is a prevalent scenario generated during excavation.In order to improve the dr...Layered rock mass of significant strength changes for adjacent layers is frequently observed in underground excavation,and dynamic loading is a prevalent scenario generated during excavation.In order to improve the driving efficiency and reduce engineering accidents,dynamic compression characteristics of this kind of rock mass should be understood.The dynamic properties of a layered composite rock mass are investigated through a series of rock tests and numerical simulations.The rock mass is artificially made of various proportions of sand,cement and water to control the distinct strength variations at various composite layers separated by parallel bedding planes.All rock specimens are prefabricated in a specially designed mould and then cut into 50 mm in diameter and 50 mm in height for split Hopkinson pressure bar(SHPB)dynamic compression testing.The test results reveal that increasing strain rate causes the increases of peak strength,σ_p,and the corresponding failure strain,ε_p,while the dynamic elastic modulus,E_d,remains almost unchanged.Interestingly,under the same strain rates,Ed of the composite rock specimen is found to decline first and then increase as the dip angle of bedding plane increases.The obtained rock failure patterns due to various dip angles lead to failure modes that could be classified into four categories from our dynamic tests.Also,a series of counterpart numerical simulations has been undertaken,showing that dynamic responses are in good agreement with those obtained from the SHPB tests.The numerical analysis enables us to Iook into the dynamic characteristics of the composite rock mass subjected to a broader range of strain rates and dip angles than these being tested.展开更多
Most hovering insects flap their wings in a horizontal plane, called 'normal hovering'. But some of the best hoverers, e.g. true hoverflies, hover with an inclined stroke plane. In the present paper, the longitudina...Most hovering insects flap their wings in a horizontal plane, called 'normal hovering'. But some of the best hoverers, e.g. true hoverflies, hover with an inclined stroke plane. In the present paper, the longitudinal dynamic flight stability of a model hoverfly in inclined-stroke-plane hovering was studied. Computational fluid dynamics was used to compute the aerodynamic derivatives and the eigenvalue and eigenvector analysis was used to solve the equations of motion. The primary findings are as follows. (1) For inclined-stroke-plane hovering, the same three natural modes of motion as those for normal hovering were identified: one unstable oscillatory mode, one stable fast subsidence mode, and one stable slow subsidence mode. The unstable oscillatory mode and the fast subsidence mode mainly have horizontal translation and pitch rotation, and the slow subsidence mode mainly has vertical translation. (2) Because of the existence of the unstable oscillatory mode, inclined-stroke-plane hov- ering flight is not stable. (3) Although there are large differences in stroke plane and body orientations between the in- clined-stroke-plane hovering and normal hovering, the relative position between the mean center of pressure and center of mass for these two cases is not very different, resulting in similar stability derivatives, hence similar dynamic stability properties for these two types of hovering.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51608174)the Programmes for Science and Technology Development of Henan Province,China(Grant No.192102310014)。
文摘Layered rock mass of significant strength changes for adjacent layers is frequently observed in underground excavation,and dynamic loading is a prevalent scenario generated during excavation.In order to improve the driving efficiency and reduce engineering accidents,dynamic compression characteristics of this kind of rock mass should be understood.The dynamic properties of a layered composite rock mass are investigated through a series of rock tests and numerical simulations.The rock mass is artificially made of various proportions of sand,cement and water to control the distinct strength variations at various composite layers separated by parallel bedding planes.All rock specimens are prefabricated in a specially designed mould and then cut into 50 mm in diameter and 50 mm in height for split Hopkinson pressure bar(SHPB)dynamic compression testing.The test results reveal that increasing strain rate causes the increases of peak strength,σ_p,and the corresponding failure strain,ε_p,while the dynamic elastic modulus,E_d,remains almost unchanged.Interestingly,under the same strain rates,Ed of the composite rock specimen is found to decline first and then increase as the dip angle of bedding plane increases.The obtained rock failure patterns due to various dip angles lead to failure modes that could be classified into four categories from our dynamic tests.Also,a series of counterpart numerical simulations has been undertaken,showing that dynamic responses are in good agreement with those obtained from the SHPB tests.The numerical analysis enables us to Iook into the dynamic characteristics of the composite rock mass subjected to a broader range of strain rates and dip angles than these being tested.
文摘Most hovering insects flap their wings in a horizontal plane, called 'normal hovering'. But some of the best hoverers, e.g. true hoverflies, hover with an inclined stroke plane. In the present paper, the longitudinal dynamic flight stability of a model hoverfly in inclined-stroke-plane hovering was studied. Computational fluid dynamics was used to compute the aerodynamic derivatives and the eigenvalue and eigenvector analysis was used to solve the equations of motion. The primary findings are as follows. (1) For inclined-stroke-plane hovering, the same three natural modes of motion as those for normal hovering were identified: one unstable oscillatory mode, one stable fast subsidence mode, and one stable slow subsidence mode. The unstable oscillatory mode and the fast subsidence mode mainly have horizontal translation and pitch rotation, and the slow subsidence mode mainly has vertical translation. (2) Because of the existence of the unstable oscillatory mode, inclined-stroke-plane hov- ering flight is not stable. (3) Although there are large differences in stroke plane and body orientations between the in- clined-stroke-plane hovering and normal hovering, the relative position between the mean center of pressure and center of mass for these two cases is not very different, resulting in similar stability derivatives, hence similar dynamic stability properties for these two types of hovering.