The absorbing process in isolating and coating process of α-olefin drag reducing polymer was studied by molecular dynamic simulation method, on basis of coating theory of α-olefin drag reducing polymer particles wit...The absorbing process in isolating and coating process of α-olefin drag reducing polymer was studied by molecular dynamic simulation method, on basis of coating theory of α-olefin drag reducing polymer particles with polyurethane as coating material. The distributions of sodium laurate, sodium dodeeyl sulfate, and sodium dodeeyl benzene sulfonate on the surface of α-olefin drag reducing polymer particles were almost the same, but the bending degrees of them were obviously different. The bending degree of SLA molecules was greater than those of the other two surfactant molecules. Simulation results of absorbing and accumulating structure showed that, though hydrophobie properties of surfactant molecules were almost the same, water density around long chain sulfonate sodium was bigger than that around alkyl sulfate sodium. This property goes against useful absorbing and accumulating on the surface of α-olefin drag reducing polymer particles; simulation results of interactions of different surfactant and multiple hydroxyl compounds on surface of particles showed that, interactions of different surfaetant and one kind of multiple hydroxyl compound were similar to those of one kind of surfaetant and different multiple hydroxyl compounds. These two contrast types of interactions also exhibited the differences of absorbing distribution and closing degrees to surface of particles. The sequence of closing degrees was derived from simulation; control step of addition polymerization interaction in coating process was absorbing mass transfer process, so the more closed to surface of particle the multiple hydroxyl compounds were, the easier interactions With isoeyanate were. Simulation results represented the compatibility relationship between surfactant and multiple hydroxyl compounds. The isolating and coating processes of α-olefin drag reducing polymer were further understood on molecule and atom level through above simulation research, and based on the simulation, a referenced theoretical basis was provided for practical optimal selection and experimental preparation of α-olefin drag reducing polymer particles suspension isolation agent.展开更多
The western coast of Hainan Island exhibits a savanna landscape. Many types of sand dunes, including transverse dune ridges, longitudinal dune ridges, elliptical dunes, coppice dunes, and climbing dunes, are widely di...The western coast of Hainan Island exhibits a savanna landscape. Many types of sand dunes, including transverse dune ridges, longitudinal dune ridges, elliptical dunes, coppice dunes, and climbing dunes, are widely distributed in the coastal zone. In winter, high-frequency and high-energy NE winds (dominant winds) are prevalent, with a resultant drift direction (RDD) of S35.6°W. In spring, low-frequency and low-energy SW secondary winds prevail, with a RDD of N25.1°E. Wind tunnel simulations revealed that the airflow over the dune surface is the main factor controlling the erosion and deposition patterns of dune surfaces and the morphological development of dunes. In the region's bidirectional wind environment, with two seasonally distinct energy levels, the airflow over the surface of elliptical dunes, barchan dunes, and transverse dune ridges will exhibit a transverse pattern, whereas the airflow over longitudinal dunes ridges exhibits a lateral pattern and that over climbing dunes exhibits a climbing-circumfluent pattern. These patterns represent different dynamic processes. The coastal dunes on the western coast of Hainan Island are influenced by factors such as onshore winds, sand sources, coastal slopes, rivers, and forest shelter belts. The source of the sand that supplements these dunes particularly influences the development pattern: when there is more sand, the pattern shows positive equilibrium deposition between dune ridges and dunes; otherwise, it shows negative equilibrium deposition. The presence or absence of forest shelter belts also influences deposition and dune development patterns and transformation of dune forms. Coastal dunes and inland desert dunes experience similar dynamic processes, but the former have more diversified shapes and more complex formation mechanisms.展开更多
In this paper,the process modeling and dynamic simulation for the EAST helium refrigerator has been completed.The cryogenic process model is described and the main components are customized in detail.The process model...In this paper,the process modeling and dynamic simulation for the EAST helium refrigerator has been completed.The cryogenic process model is described and the main components are customized in detail.The process model is controlled by the PLC simulator,and the realtime communication between the process model and the controllers is achieved by a customized interface.Validation of the process model has been confirmed based on EAST experimental data during the cool down process of 300-80 K.Simulation results indicate that this process simulator is able to reproduce dynamic behaviors of the EAST helium refrigerator very well for the operation of long pulsed plasma discharge.The cryogenic process simulator based on control architecture is available for operation optimization and control design of EAST cryogenic systems to cope with the long pulsed heat loads in the future.展开更多
A first principles-based dynamic model for a continuous catalyst regeneration (CCR) platforming process, the UOP commercial naphtha catalytic reforming process, is developed in this paper. The lumping details of the n...A first principles-based dynamic model for a continuous catalyst regeneration (CCR) platforming process, the UOP commercial naphtha catalytic reforming process, is developed in this paper. The lumping details of the naphtha feed and reaction scheme of the reaction model are given. The process model is composed of the reforming reaction model with catalyst deactivation, the furnace model and the separator model, which is capable of capturing the major dynamics that occurs in this process system. Dynamic simulations are performed based on Gear numerical algorithm and method of lines (MOL), a numerical technique dealing with partial differential equations (PDEs). The results of simulation are also presented. Dynamic responses caused by disturbances in the process system can be correctly predicted through simulations.展开更多
A new dynamic non-equilibrium mixing-pool model for simulating start-up and dynamic re-sponse of a distillation column is reported.The proposed model is established on the basis ofconsidering the two dimensional flow/...A new dynamic non-equilibrium mixing-pool model for simulating start-up and dynamic re-sponse of a distillation column is reported.The proposed model is established on the basis ofconsidering the two dimensional flow/mixing behavior of actual trays in a distillation column.Com-parison is made among the computed results of the start-up time and the dynamic response time bythe proposed and five other typical models.It is found that the computed time for both dynamicprocesses is longer by the model which considers any flow/mixing pattern than by the model withoutsuch concern.The inertia effect of flow/mixing seems to be important and can not be ignored inmodeling the transient process of distillation.The proposed model,which is believed to be suitableto large column,seems somewhat useful in predicting industrial distillation dynamics.展开更多
The goal of this paper is to provide an approach to investigate the variation of fiber quantity in a certain cross-section of the drafting zone. This model with discrete-event simulation( DES)method was presented to s...The goal of this paper is to provide an approach to investigate the variation of fiber quantity in a certain cross-section of the drafting zone. This model with discrete-event simulation( DES)method was presented to simulate the dynamic drafting process. This model described the behavior of individual fibers,which was divided into four phases and simulated by corresponding modules. Three sets of processing conditions in industry were simulated and demonstrated the applications of this model. The comparison between experiments and simulation results could also validate this model. This model could be used to simulate various drafting process with appropriate drafting settings.展开更多
In this paper we address the dynamics of compensation cutting process from both Laplace s frequency domain and the time domain of the first time, using the two computer aided analyzing softwares: MATLAB and SIMULI...In this paper we address the dynamics of compensation cutting process from both Laplace s frequency domain and the time domain of the first time, using the two computer aided analyzing softwares: MATLAB and SIMULINK. Theoretical analysis and simulation experiments firstly show that not only the systematical stiffness of workpiece, spindle and tools, but also the regenerated coefficient affects the compensation displacement effect. The results show that the SREC is practicable in reality to decease the spindle induced errors in many engineering applications such as hard boring through simulation and the preliminary experiment results.展开更多
A molecular dynamics simulation study has been performed for the microstructure evolution in a liquid metal Ni system during crystallization process at two cooling rates by adopting the embedded atom method (EAM) mo...A molecular dynamics simulation study has been performed for the microstructure evolution in a liquid metal Ni system during crystallization process at two cooling rates by adopting the embedded atom method (EAM) model potential. The bond-type index method of Honeycutt-Andersen (HA) and a new cluster-type index method (CTIM-2) have been used to detect and analyse the microstructures in this system. It is demonstrated that the cooling rate plays a critical role in the microstructure evolution: below the crystallization temperature Tc, the effects of cooling rate are very remarkable and can be fully displayed. At different cooling rates of 2.0 × 10^13 K·s^-1 and 1.0 × 10^12 K·s^-1, two different kinds of crystal structures are obtained in the system. The first one is the coexistence of the hcp (expressed by (12 0 0 0 6 6) in CTIM-2) and the fcc (12 0 0 0 12 0) basic clusters consisting of 1421 and 1422 bond-types, and the hcp basic cluster becomes the dominant one with decreasing temperature, the second one is mainly the fcc (12 0 0 0 12 0) basic clusters consisting of 1421 bond-type, and their crystallization temperatures Tc would be 1073 and 1173 K, respectively.展开更多
In order to confirm which process is the most important in the blood coagulation cascade,a dynamic model on the function of platelets in blood coagulation is presented based on biochemical experiments.Based on qualita...In order to confirm which process is the most important in the blood coagulation cascade,a dynamic model on the function of platelets in blood coagulation is presented based on biochemical experiments.Based on qualitative analysis and mathematical simulation,a series of conclusions about the influence of the activation rate of factor VIII and factor IX on the generation of thrombin(IIa)are drawn.It is evident that the pro-coagulation stimulus must exceed a threshold value to initiate the coagulation cascade.The value is related to the binding constant d_2 of the platelet. The stability of the equilibrium value is also related to the pro-coagulation stimulus. This article also evaluates the influence of the stimulus strength and the activated rate parameter of platelets on thrombin.The proportion of platelets activated at any given time is designated c.To each c,we obtain a maximum concentration of thrombin.It is evident that when the level of factor IX is below 1% of the normal level,the rate of thrombin generation reduces dramatically,resulting in severe bleeding tendency.展开更多
System dynamics (SD) theory has long been deployed in modeling complex non-linear interrelationships but, so far it has not been common to do the kind of modeling in support of bringing environmental sustainability po...System dynamics (SD) theory has long been deployed in modeling complex non-linear interrelationships but, so far it has not been common to do the kind of modeling in support of bringing environmental sustainability policies to practice. This is largely because the challenge of including spatial data has not yet been well met. Potential for adoption of SD and GIS methods in combination is exemplified with the results of a decision-support exercise designed for simulation and prediction of the dynamic inter-relationships between socio-economic development and environmental quality for the "Wen, Pi, Du" county in Sichuan province, southwestern China.展开更多
In order to remove N_(2) from low quality natural gas,a mathematical model has been established by Aspen adsorption,using the CH_(4)-selective sorbent silicalite-1 pellets.The dynamic adsorption isotherm was first sim...In order to remove N_(2) from low quality natural gas,a mathematical model has been established by Aspen adsorption,using the CH_(4)-selective sorbent silicalite-1 pellets.The dynamic adsorption isotherm was first simulated by breakthrough simulation of a CH_(4)/N_(2) mixture at different adsorption pressures and feed flow rates based on breakthrough experiments.The resulting simulated CH_(4) dynamic adsorption amounts were very close to the experimental data at three different adsorption pressures(100,200,and 300 kPa).Moreover,a single-bed,three-step pressure swing adsorption(PSA)experiment was performed,and the results were in good agreement with the simulated data,further corroborating the accuracy of the gas dynamic adsorption isotherm obtained by the simulation method.Finally,based on the simulated dynamic adsorption isotherm of CH_(4) and N_(2),a four-bed,eight-step PSA process has been designed,which enriched 75%(vol)CH_(4) and 80%(vol)CH_(4) to 95%(vol)and 99%(vol),and provided 99%(vol)recovery.展开更多
In recent twenty years, much numerical simulation work has been done on the evolution of Qinghai-Xizang (Tibetan) plateau. In this paper some principal numerical models and results are reviewed and analyzed. The earli...In recent twenty years, much numerical simulation work has been done on the evolution of Qinghai-Xizang (Tibetan) plateau. In this paper some principal numerical models and results are reviewed and analyzed. The earlier plane stress or plane strain model has much discrepancy with the actual deformation of Qinghai-Xizang plateau, such as the thickening of Tibetan crust and the lateral extrusion of Tibet along strike-slip faults. The thin viscous sheet model and the thin-plate model may simulate the change of the crustal thickness and the deformation pro-duced by gravitational force. It is suitable for studying the large-scale and long-time deformation. The influence of faults on the deformation of Tibetan plateau should be further studied.展开更多
Synthesizing the mechanical models of the belt, the driver and the take-up device, the dynamics model was established on the longitudinal vibration of the overall belt conveyor system with finite elemental method, and...Synthesizing the mechanical models of the belt, the driver and the take-up device, the dynamics model was established on the longitudinal vibration of the overall belt conveyor system with finite elemental method, and S-function simulation block of asynchronous motor owing feedback function was built in Matlab/Simulink software, the simulation block indicates that motor rotation speed and its output moment vary with load and time, and the motor is a dynamic feedback system in working process. The state space block was adopted to express model of the belt. Thus it created simulation model of established dynamic model of overall belt conveyor system with Mat- lab/Simulink software, and simulates the course of starting by properly setting simulation parameters, and processes data for visualization.展开更多
Hardware in the loop simulation (HILS) has been investigated in the field of the multibody dynamics (MBD), which combined the MBD simulation with the actual mechanical system. The fast simulation is necessary for ...Hardware in the loop simulation (HILS) has been investigated in the field of the multibody dynamics (MBD), which combined the MBD simulation with the actual mechanical system. The fast simulation is necessary for the HILS system in order to require the real time simulation. This paper presents a fast simulation technique using the domain decomposition method with the iteration in the flexible multibody system in which flexible linkage system and electro-hydraulic drive system are coupled with each other. C 2013 The Chinese Society of Theoretical and Applied Mechanics.[doi:10.1063/2.1301301]展开更多
Three-dimensional transient numerical simulation of gas exchange process in a four-stroke motorcycle engine with a semi-spherical combustion chamber with two tilt valves was studied. Combination of the grid re-meshing...Three-dimensional transient numerical simulation of gas exchange process in a four-stroke motorcycle engine with a semi-spherical combustion chamber with two tilt valves was studied. Combination of the grid re-meshing method and the snapper technique made the valves move smoothly. The flow structure and pattern in a complete engine cycle were described in detail. Tumble ratios around the x-axis and y-axis were analyzed. Comparison of computed pressure with experimental pressure under motored condition revealed that the simulation had high calculation precision; CFD simulation can be regarded as an im-portant tool for resolving the complex aerodynamic behavior in motorcycle engines.展开更多
Binding and releasing ligands are critical for the biological functions of many proteins,so it is important to determine these highly dynamic processes.Although there are experimental techniques to determine the struc...Binding and releasing ligands are critical for the biological functions of many proteins,so it is important to determine these highly dynamic processes.Although there are experimental techniques to determine the structure of a protein-ligand complex,it only provides a static picture of the system.With the rapid increase of computing power and improved algorithms,molecular dynamics(MD)simulations have diverse of superiority in probing the binding and release process.However,it remains a great challenge to overcome the time and length scales when the system becomes large.This work presents an enhanced sampling tool for ligand binding and release,which is based on iterative multiple independent MD simulations guided by contacts formed between the ligand and the protein.From the simulation results on adenylate kinase,we observe the process of ligand binding and release while the conventional MD simulations at the same time scale cannot.展开更多
Using stochastic dynamic simulation for railway vehicle collision still faces many challenges,such as high modelling complexity and time-consuming.To address the challenges,we introduce a novel data-driven stochastic ...Using stochastic dynamic simulation for railway vehicle collision still faces many challenges,such as high modelling complexity and time-consuming.To address the challenges,we introduce a novel data-driven stochastic process modelling(DSPM)approach into dynamic simulation of the railway vehicle collision.This DSPM approach consists of two steps:(i)process description,four kinds of kernels are used to describe the uncertainty inherent in collision processes;(ii)solving,stochastic variational inferences and mini-batch algorithms can then be used to accelerate computations of stochastic processes.By applying DSPM,Gaussian process regression(GPR)and finite element(FE)methods to two collision scenarios(i.e.lead car colliding with a rigid wall,and the lead car colliding with another lead car),we are able to achieve a comprehensive analysis.The comparison between the DSPM approach and the FE method revealed that the DSPM approach is capable of calculating the corresponding confidence interval,simultaneously improving the overall computational efficiency.Comparing the DSPM approach with the GPR method indicates that the DSPM approach has the ability to accurately describe the dynamic response under unknown conditions.Overall,this research demonstrates the feasibility and usability of the proposed DSPM approach for stochastic dynamics simulation of the railway vehicle collision.展开更多
In recent twenty years, much numerical simulation work has been done on the evolution of Qinghai-Xizang (Tibetan) plateau. In this paper some principal numerical models and results are reviewed and analyzed. The earli...In recent twenty years, much numerical simulation work has been done on the evolution of Qinghai-Xizang (Tibetan) plateau. In this paper some principal numerical models and results are reviewed and analyzed. The earlier plane stress or plane strain model has much discrepancy with the actual deformation of Qinghai-Xizang plateau, such as the thickening of Tibetan crust and the lateral extrusion of Tibet along strike-slip faults. The thin viscous sheet model and the thin-plate model may simulate the change of the crustal thickness and the deformation pro-duced by gravitational force. It is suitable for studying the large-scale and long-time deformation. The influence of faults on the deformation of Tibetan plateau should be further studied.展开更多
In the research of parachute, canopy inflation process modeling is one of the most complicated tasks. As canopy often experiences the largest deformations and loa-dings during a very short time, it is of great difficu...In the research of parachute, canopy inflation process modeling is one of the most complicated tasks. As canopy often experiences the largest deformations and loa-dings during a very short time, it is of great difficulty for theoretical analysis and experimental measurements. In this paper, aerodynamic equations and structural dynamics equations were developed for describing parachute opening process, and an iterative coupling solving strategy incorpo- rating the above equations was proposed for a small-scale, flexible and flat-circular parachute. Then, analyses were carried out for canopy geometry, time-dependent pressure difference between the inside and outside of the canopy, transient vortex around the canopy and the flow field in the radial plane as a sequence in opening process. The mechanism of the canopy shape development was explained from perspective of transient flow fields during the inflation process. Experiments of the parachute opening process were conducted in a wind tunnel, in which instantaneous shape of the canopy was measured by high velocity camera and the opening loading was measured by dynamometer balance. The theoretical predictions were found in good agreement with the experimental results, validating the proposed approach. This numerical method can improve the situation of strong dependence of parachute research on wind tunnel tests, and is of significance to the understanding of the mechanics of parachute inflation process.展开更多
文摘The absorbing process in isolating and coating process of α-olefin drag reducing polymer was studied by molecular dynamic simulation method, on basis of coating theory of α-olefin drag reducing polymer particles with polyurethane as coating material. The distributions of sodium laurate, sodium dodeeyl sulfate, and sodium dodeeyl benzene sulfonate on the surface of α-olefin drag reducing polymer particles were almost the same, but the bending degrees of them were obviously different. The bending degree of SLA molecules was greater than those of the other two surfactant molecules. Simulation results of absorbing and accumulating structure showed that, though hydrophobie properties of surfactant molecules were almost the same, water density around long chain sulfonate sodium was bigger than that around alkyl sulfate sodium. This property goes against useful absorbing and accumulating on the surface of α-olefin drag reducing polymer particles; simulation results of interactions of different surfactant and multiple hydroxyl compounds on surface of particles showed that, interactions of different surfaetant and one kind of multiple hydroxyl compound were similar to those of one kind of surfaetant and different multiple hydroxyl compounds. These two contrast types of interactions also exhibited the differences of absorbing distribution and closing degrees to surface of particles. The sequence of closing degrees was derived from simulation; control step of addition polymerization interaction in coating process was absorbing mass transfer process, so the more closed to surface of particle the multiple hydroxyl compounds were, the easier interactions With isoeyanate were. Simulation results represented the compatibility relationship between surfactant and multiple hydroxyl compounds. The isolating and coating processes of α-olefin drag reducing polymer were further understood on molecule and atom level through above simulation research, and based on the simulation, a referenced theoretical basis was provided for practical optimal selection and experimental preparation of α-olefin drag reducing polymer particles suspension isolation agent.
基金National Natural Science Foundation of China, No.40671186 No.40271012
文摘The western coast of Hainan Island exhibits a savanna landscape. Many types of sand dunes, including transverse dune ridges, longitudinal dune ridges, elliptical dunes, coppice dunes, and climbing dunes, are widely distributed in the coastal zone. In winter, high-frequency and high-energy NE winds (dominant winds) are prevalent, with a resultant drift direction (RDD) of S35.6°W. In spring, low-frequency and low-energy SW secondary winds prevail, with a RDD of N25.1°E. Wind tunnel simulations revealed that the airflow over the dune surface is the main factor controlling the erosion and deposition patterns of dune surfaces and the morphological development of dunes. In the region's bidirectional wind environment, with two seasonally distinct energy levels, the airflow over the surface of elliptical dunes, barchan dunes, and transverse dune ridges will exhibit a transverse pattern, whereas the airflow over longitudinal dunes ridges exhibits a lateral pattern and that over climbing dunes exhibits a climbing-circumfluent pattern. These patterns represent different dynamic processes. The coastal dunes on the western coast of Hainan Island are influenced by factors such as onshore winds, sand sources, coastal slopes, rivers, and forest shelter belts. The source of the sand that supplements these dunes particularly influences the development pattern: when there is more sand, the pattern shows positive equilibrium deposition between dune ridges and dunes; otherwise, it shows negative equilibrium deposition. The presence or absence of forest shelter belts also influences deposition and dune development patterns and transformation of dune forms. Coastal dunes and inland desert dunes experience similar dynamic processes, but the former have more diversified shapes and more complex formation mechanisms.
基金supported by National Natural Science Foundation of China(No.51306195)Key Laboratory of Cryogenics,Technical Institute of Physics and Chemistry,CAS(No.CRYO201408)
文摘In this paper,the process modeling and dynamic simulation for the EAST helium refrigerator has been completed.The cryogenic process model is described and the main components are customized in detail.The process model is controlled by the PLC simulator,and the realtime communication between the process model and the controllers is achieved by a customized interface.Validation of the process model has been confirmed based on EAST experimental data during the cool down process of 300-80 K.Simulation results indicate that this process simulator is able to reproduce dynamic behaviors of the EAST helium refrigerator very well for the operation of long pulsed plasma discharge.The cryogenic process simulator based on control architecture is available for operation optimization and control design of EAST cryogenic systems to cope with the long pulsed heat loads in the future.
文摘A first principles-based dynamic model for a continuous catalyst regeneration (CCR) platforming process, the UOP commercial naphtha catalytic reforming process, is developed in this paper. The lumping details of the naphtha feed and reaction scheme of the reaction model are given. The process model is composed of the reforming reaction model with catalyst deactivation, the furnace model and the separator model, which is capable of capturing the major dynamics that occurs in this process system. Dynamic simulations are performed based on Gear numerical algorithm and method of lines (MOL), a numerical technique dealing with partial differential equations (PDEs). The results of simulation are also presented. Dynamic responses caused by disturbances in the process system can be correctly predicted through simulations.
文摘A new dynamic non-equilibrium mixing-pool model for simulating start-up and dynamic re-sponse of a distillation column is reported.The proposed model is established on the basis ofconsidering the two dimensional flow/mixing behavior of actual trays in a distillation column.Com-parison is made among the computed results of the start-up time and the dynamic response time bythe proposed and five other typical models.It is found that the computed time for both dynamicprocesses is longer by the model which considers any flow/mixing pattern than by the model withoutsuch concern.The inertia effect of flow/mixing seems to be important and can not be ignored inmodeling the transient process of distillation.The proposed model,which is believed to be suitableto large column,seems somewhat useful in predicting industrial distillation dynamics.
基金the Key Grant Project of Ministry of Education of the People’s Republic of China through Project,China(No.113027A)the Fundamental Research Funds for the Central Universities,China
文摘The goal of this paper is to provide an approach to investigate the variation of fiber quantity in a certain cross-section of the drafting zone. This model with discrete-event simulation( DES)method was presented to simulate the dynamic drafting process. This model described the behavior of individual fibers,which was divided into four phases and simulated by corresponding modules. Three sets of processing conditions in industry were simulated and demonstrated the applications of this model. The comparison between experiments and simulation results could also validate this model. This model could be used to simulate various drafting process with appropriate drafting settings.
文摘In this paper we address the dynamics of compensation cutting process from both Laplace s frequency domain and the time domain of the first time, using the two computer aided analyzing softwares: MATLAB and SIMULINK. Theoretical analysis and simulation experiments firstly show that not only the systematical stiffness of workpiece, spindle and tools, but also the regenerated coefficient affects the compensation displacement effect. The results show that the SREC is practicable in reality to decease the spindle induced errors in many engineering applications such as hard boring through simulation and the preliminary experiment results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 50271026 and 50571037).
文摘A molecular dynamics simulation study has been performed for the microstructure evolution in a liquid metal Ni system during crystallization process at two cooling rates by adopting the embedded atom method (EAM) model potential. The bond-type index method of Honeycutt-Andersen (HA) and a new cluster-type index method (CTIM-2) have been used to detect and analyse the microstructures in this system. It is demonstrated that the cooling rate plays a critical role in the microstructure evolution: below the crystallization temperature Tc, the effects of cooling rate are very remarkable and can be fully displayed. At different cooling rates of 2.0 × 10^13 K·s^-1 and 1.0 × 10^12 K·s^-1, two different kinds of crystal structures are obtained in the system. The first one is the coexistence of the hcp (expressed by (12 0 0 0 6 6) in CTIM-2) and the fcc (12 0 0 0 12 0) basic clusters consisting of 1421 and 1422 bond-types, and the hcp basic cluster becomes the dominant one with decreasing temperature, the second one is mainly the fcc (12 0 0 0 12 0) basic clusters consisting of 1421 bond-type, and their crystallization temperatures Tc would be 1073 and 1173 K, respectively.
基金The project supported by The Beijing Municipal Natural Sciences Foundation (3982005)
文摘In order to confirm which process is the most important in the blood coagulation cascade,a dynamic model on the function of platelets in blood coagulation is presented based on biochemical experiments.Based on qualitative analysis and mathematical simulation,a series of conclusions about the influence of the activation rate of factor VIII and factor IX on the generation of thrombin(IIa)are drawn.It is evident that the pro-coagulation stimulus must exceed a threshold value to initiate the coagulation cascade.The value is related to the binding constant d_2 of the platelet. The stability of the equilibrium value is also related to the pro-coagulation stimulus. This article also evaluates the influence of the stimulus strength and the activated rate parameter of platelets on thrombin.The proportion of platelets activated at any given time is designated c.To each c,we obtain a maximum concentration of thrombin.It is evident that when the level of factor IX is below 1% of the normal level,the rate of thrombin generation reduces dramatically,resulting in severe bleeding tendency.
文摘System dynamics (SD) theory has long been deployed in modeling complex non-linear interrelationships but, so far it has not been common to do the kind of modeling in support of bringing environmental sustainability policies to practice. This is largely because the challenge of including spatial data has not yet been well met. Potential for adoption of SD and GIS methods in combination is exemplified with the results of a decision-support exercise designed for simulation and prediction of the dynamic inter-relationships between socio-economic development and environmental quality for the "Wen, Pi, Du" county in Sichuan province, southwestern China.
文摘In order to remove N_(2) from low quality natural gas,a mathematical model has been established by Aspen adsorption,using the CH_(4)-selective sorbent silicalite-1 pellets.The dynamic adsorption isotherm was first simulated by breakthrough simulation of a CH_(4)/N_(2) mixture at different adsorption pressures and feed flow rates based on breakthrough experiments.The resulting simulated CH_(4) dynamic adsorption amounts were very close to the experimental data at three different adsorption pressures(100,200,and 300 kPa).Moreover,a single-bed,three-step pressure swing adsorption(PSA)experiment was performed,and the results were in good agreement with the simulated data,further corroborating the accuracy of the gas dynamic adsorption isotherm obtained by the simulation method.Finally,based on the simulated dynamic adsorption isotherm of CH_(4) and N_(2),a four-bed,eight-step PSA process has been designed,which enriched 75%(vol)CH_(4) and 80%(vol)CH_(4) to 95%(vol)and 99%(vol),and provided 99%(vol)recovery.
文摘In recent twenty years, much numerical simulation work has been done on the evolution of Qinghai-Xizang (Tibetan) plateau. In this paper some principal numerical models and results are reviewed and analyzed. The earlier plane stress or plane strain model has much discrepancy with the actual deformation of Qinghai-Xizang plateau, such as the thickening of Tibetan crust and the lateral extrusion of Tibet along strike-slip faults. The thin viscous sheet model and the thin-plate model may simulate the change of the crustal thickness and the deformation pro-duced by gravitational force. It is suitable for studying the large-scale and long-time deformation. The influence of faults on the deformation of Tibetan plateau should be further studied.
文摘Synthesizing the mechanical models of the belt, the driver and the take-up device, the dynamics model was established on the longitudinal vibration of the overall belt conveyor system with finite elemental method, and S-function simulation block of asynchronous motor owing feedback function was built in Matlab/Simulink software, the simulation block indicates that motor rotation speed and its output moment vary with load and time, and the motor is a dynamic feedback system in working process. The state space block was adopted to express model of the belt. Thus it created simulation model of established dynamic model of overall belt conveyor system with Mat- lab/Simulink software, and simulates the course of starting by properly setting simulation parameters, and processes data for visualization.
文摘Hardware in the loop simulation (HILS) has been investigated in the field of the multibody dynamics (MBD), which combined the MBD simulation with the actual mechanical system. The fast simulation is necessary for the HILS system in order to require the real time simulation. This paper presents a fast simulation technique using the domain decomposition method with the iteration in the flexible multibody system in which flexible linkage system and electro-hydraulic drive system are coupled with each other. C 2013 The Chinese Society of Theoretical and Applied Mechanics.[doi:10.1063/2.1301301]
文摘Three-dimensional transient numerical simulation of gas exchange process in a four-stroke motorcycle engine with a semi-spherical combustion chamber with two tilt valves was studied. Combination of the grid re-meshing method and the snapper technique made the valves move smoothly. The flow structure and pattern in a complete engine cycle were described in detail. Tumble ratios around the x-axis and y-axis were analyzed. Comparison of computed pressure with experimental pressure under motored condition revealed that the simulation had high calculation precision; CFD simulation can be regarded as an im-portant tool for resolving the complex aerodynamic behavior in motorcycle engines.
基金supported by the National Natural Science Foundation of China(No.91953101)the Strategic Priority Research Program of the Chinese Academy of Science(XDB37040202)the Hefei National Science Center Pilot Project Funds,and the New Concept Medical Research Fund of USTC。
文摘Binding and releasing ligands are critical for the biological functions of many proteins,so it is important to determine these highly dynamic processes.Although there are experimental techniques to determine the structure of a protein-ligand complex,it only provides a static picture of the system.With the rapid increase of computing power and improved algorithms,molecular dynamics(MD)simulations have diverse of superiority in probing the binding and release process.However,it remains a great challenge to overcome the time and length scales when the system becomes large.This work presents an enhanced sampling tool for ligand binding and release,which is based on iterative multiple independent MD simulations guided by contacts formed between the ligand and the protein.From the simulation results on adenylate kinase,we observe the process of ligand binding and release while the conventional MD simulations at the same time scale cannot.
基金supported by the National Key Research and Development Project(No.2019YFB1405401)the National Natural Science Foundation of China(No.5217120056)。
文摘Using stochastic dynamic simulation for railway vehicle collision still faces many challenges,such as high modelling complexity and time-consuming.To address the challenges,we introduce a novel data-driven stochastic process modelling(DSPM)approach into dynamic simulation of the railway vehicle collision.This DSPM approach consists of two steps:(i)process description,four kinds of kernels are used to describe the uncertainty inherent in collision processes;(ii)solving,stochastic variational inferences and mini-batch algorithms can then be used to accelerate computations of stochastic processes.By applying DSPM,Gaussian process regression(GPR)and finite element(FE)methods to two collision scenarios(i.e.lead car colliding with a rigid wall,and the lead car colliding with another lead car),we are able to achieve a comprehensive analysis.The comparison between the DSPM approach and the FE method revealed that the DSPM approach is capable of calculating the corresponding confidence interval,simultaneously improving the overall computational efficiency.Comparing the DSPM approach with the GPR method indicates that the DSPM approach has the ability to accurately describe the dynamic response under unknown conditions.Overall,this research demonstrates the feasibility and usability of the proposed DSPM approach for stochastic dynamics simulation of the railway vehicle collision.
文摘In recent twenty years, much numerical simulation work has been done on the evolution of Qinghai-Xizang (Tibetan) plateau. In this paper some principal numerical models and results are reviewed and analyzed. The earlier plane stress or plane strain model has much discrepancy with the actual deformation of Qinghai-Xizang plateau, such as the thickening of Tibetan crust and the lateral extrusion of Tibet along strike-slip faults. The thin viscous sheet model and the thin-plate model may simulate the change of the crustal thickness and the deformation pro-duced by gravitational force. It is suitable for studying the large-scale and long-time deformation. The influence of faults on the deformation of Tibetan plateau should be further studied.
基金the National Natural Science Foundation of China(10377006).
文摘In the research of parachute, canopy inflation process modeling is one of the most complicated tasks. As canopy often experiences the largest deformations and loa-dings during a very short time, it is of great difficulty for theoretical analysis and experimental measurements. In this paper, aerodynamic equations and structural dynamics equations were developed for describing parachute opening process, and an iterative coupling solving strategy incorpo- rating the above equations was proposed for a small-scale, flexible and flat-circular parachute. Then, analyses were carried out for canopy geometry, time-dependent pressure difference between the inside and outside of the canopy, transient vortex around the canopy and the flow field in the radial plane as a sequence in opening process. The mechanism of the canopy shape development was explained from perspective of transient flow fields during the inflation process. Experiments of the parachute opening process were conducted in a wind tunnel, in which instantaneous shape of the canopy was measured by high velocity camera and the opening loading was measured by dynamometer balance. The theoretical predictions were found in good agreement with the experimental results, validating the proposed approach. This numerical method can improve the situation of strong dependence of parachute research on wind tunnel tests, and is of significance to the understanding of the mechanics of parachute inflation process.