Seasonal forecasting of the Indian summer monsoon by dynamically downscaling the CFSv2 output using a high resolution WRF model over the hindcast period of 1982-2008 has been performed in this study. The April start e...Seasonal forecasting of the Indian summer monsoon by dynamically downscaling the CFSv2 output using a high resolution WRF model over the hindcast period of 1982-2008 has been performed in this study. The April start ensemble mean of the CFSv2 has been used to provide the initial and lateral boundary conditions for driving the WRF. The WRF model is integrated from 1st May through 1st October for each monsoon season. The analysis suggests that the WRF exhibits potential skill in improving the rainfall skill as well as the seasonal pattern and minimizes the meteorological errors as compared to the parent CFSv2 model. The rainfall pattern is simulated quite closer to the observation (IMD) in the WRF model over CFSv2 especially over the significant rainfall regions of India such as the Western Ghats and the central India. Probability distributions of the rainfall show that the rainfall is improved with the WRF. However, the WRF simulates copious amounts of rainfall over the eastern coast of India. Surface and upper air meteorological parameters show that the WRF model improves the simulation of the lower level and upper-level winds, MSLP, CAPE and PBL height. The specific humidity profiles show substantial improvement along the vertical column of the atmosphere which can be directly related to the net precipitable water. The CFSv2 underestimates the specific humidity along the vertical which is corrected by the WRF model. Over the Bay of Bengal, the WRF model overestimates the CAPE and specific humidity which may be attributed to the copious amount of rainfall along the eastern coast of India. Residual heating profiles also show that the WRF improves the thermodynamics of the atmosphere over 700 hPa and 400 hPa levels which helps in improving the rainfall simulation. Improvement in the land surface fluxes is also witnessed in the WRF model.展开更多
An accurate simulation of air temperature at local scales is crucial for the vast majority of weather and climate applications.In this work,a hybrid statistical–dynamical downscaling method and a high-resolution dyna...An accurate simulation of air temperature at local scales is crucial for the vast majority of weather and climate applications.In this work,a hybrid statistical–dynamical downscaling method and a high-resolution dynamical-only downscaling method are applied to daily mean,minimum and maximum air temperatures to investigate the quality of localscale estimates produced by downscaling.These two downscaling approaches are evaluated using station observation data obtained from the Finnish Meteorological Institute over a near-coastal region of western Finland.The dynamical downscaling is performed with the Weather Research and Forecasting(WRF)model,and the statistical downscaling method implemented is the Cumulative Distribution Function-transform(CDF-t).The CDF-t is trained using 20 years of WRF-downscaled Climate Forecast System Reanalysis data over the region at a 3-km spatial resolution for the central month of each season.The performance of the two methods is assessed qualitatively,by inspection of quantile-quantile plots,and quantitatively,through the Cramer-von Mises,mean absolute error,and root-mean-square error diagnostics.The hybrid approach is found to provide significantly more skillful forecasts of the observed daily mean and maximum air temperatures than those of the dynamical-only downscaling(for all seasons).The hybrid method proves to be less computationally expensive,and also to give more skillful temperature forecasts(at least for the Finnish near-coastal region).展开更多
A regional coupled prediction system for the Asia-Pacific(AP-RCP)(38°E-180°,20°S-60°N) area has been established.The AP-RCP system consists of WRF-ROMS(Weather Research and Forecast,and Regional Oc...A regional coupled prediction system for the Asia-Pacific(AP-RCP)(38°E-180°,20°S-60°N) area has been established.The AP-RCP system consists of WRF-ROMS(Weather Research and Forecast,and Regional Ocean Model System) coupled models combined with local observational information through dynamically downscaling coupled data assimilation(CDA).The system generates 18-day forecasts for the atmosphere and ocean environment on a daily quasi-operational schedule at Pilot National Laboratory for Marine Science and Technology(Qingdao)(QNLM),consisting of 2 different-resolution coupled models:27 km WRF coupled with 9 km ROMS,9 km WRF coupled with 3 km ROMS,while a version of 3 km WRF coupled with 3 km ROMS is in a test mode.This study is a first step to evaluate the impact of high-resolution coupled model with dynamically downscaling CDA on the extended-range predictions,focusing on forecasts of typhoon onset,improved precipitation and typhoon intensity forecasts as well as simulation of the Kuroshio current variability associated with mesoscale oceanic activities.The results show that for realizing the extended-range predictability of atmospheric and oceanic environment characterized by statistics of mesoscale activities,a fine resolution coupled model resolving local mesoscale phenomena with balanced and coherent coupled initialization is a necessary first step.The next challenges include improving the planetary boundary physics and the representation of air-sea and air-land interactions to enable the model to resolve kilometer or sub-kilometer processes.展开更多
Mesoamerica and the Caribbean are low-latitude regions at risk for the effects of climate change. Global climate models provide large-scale assessment of climate drivers, but, at a horizontal resolution of 100 km, can...Mesoamerica and the Caribbean are low-latitude regions at risk for the effects of climate change. Global climate models provide large-scale assessment of climate drivers, but, at a horizontal resolution of 100 km, cannot resolve the effects of topography and land use as they impact the local temperature and precipitation that are keys to climate impacts. We developed a robust dynamical downscaling strategy that used the WRF regional climate model to downscale at 4 - 12 km resolution GCM results. Model verification demonstrates the need for such resolution of topography in order to properly simulate temperatures. Precipitation is more difficult to evaluate, being highly variable in time and space. Overall, a 36 km resolution is inadequate;12 km appears reasonable, especially in regions of low topography, but the 4 km resolution provides the best match with observations. This represents a tradeoff between model resolution and the computational effort needed to make simulations. A key goal is to provide climate change specialists in each country with the information they need to evaluate possible future climate change impacts.展开更多
The spatial resolution of general circulation models (GCMs) is too coarse to represent regional climate variations at the regional, basin, and local scales required for many environmental modeling and impact assessm...The spatial resolution of general circulation models (GCMs) is too coarse to represent regional climate variations at the regional, basin, and local scales required for many environmental modeling and impact assessments. Weather research and forecasting model (WRF) is a nextgeneration, fully compressible, Euler non-hydrostatic mesoscale forecast model with a runtime hydrostatic option. This model is useful for downscaling weather and climate at the scales from one kilometer to thousands of kilometers, and is useful for deriving meteorological parameters required for hydrological simulation too. The objective of this paper is to validate WRF simulating 5 km/ 1 h air temperatures by daily observed data of China Meteorological Administration (CMA) stations, and by hourly in-situ data of the Watershed Allied Telemetry Experimental Research Project. The daily validation shows that the WRF simulation has good agreement with the observed data; the R2 between the WRF simulation and each station is more than 0.93; the absolute of meanbias error (MBE) for each station is less than 2℃; and the MBEs of Ejina, Mazongshan and Alxa stations are near zero, with R2 is more than 0.98, which can be taken as an unbiased estimation. The hourly validation shows that the WRF simulation can capture the basic trend of observed data, the MBE of each site is approximately 2℃, the R2 of each site is more than 0.80, with the highest at 0.95, and the computed and observed surface air temperature series show a significantly similar trend.展开更多
本研究利用WRF-Chem(Weather Research and Forecasting model with online coupled Chemistry)模式对未来中国北方沙尘起沙过程变化进行了模拟预测。为了提高预测结果的准确度,研究综合考虑了气溶胶、温室气体和植被覆盖率等因素对天...本研究利用WRF-Chem(Weather Research and Forecasting model with online coupled Chemistry)模式对未来中国北方沙尘起沙过程变化进行了模拟预测。为了提高预测结果的准确度,研究综合考虑了气溶胶、温室气体和植被覆盖率等因素对天气、气候和起沙过程的影响。预测结果显示,2016~2029年西北部沙尘源地起沙量高于北部沙尘源地,地形和气候的差异是导致两地起沙过程及其季节变化差异的主要原因。两个沙尘源地四季起沙通量呈总体减少而部分季节增加的趋势,西北部沙尘源地起沙通量在春季总体呈上升趋势,在夏、秋和冬季呈下降趋势;北部沙尘源地起沙通量在春、夏和冬季呈下降趋势,在秋季呈微弱上升趋势。两个沙尘源地各季起沙通量的变化趋势由近地面风速主导,植被覆盖率、降水和地面温度等因素对起沙通量的年际波动有着重要影响。展开更多
A pattern projection downscaling method is employed to predict monthly station precipitation. The predictand is the monthly precipitation at 1 station in China, 60 stations in Korea, and 8 stations in Thailand. The pr...A pattern projection downscaling method is employed to predict monthly station precipitation. The predictand is the monthly precipitation at 1 station in China, 60 stations in Korea, and 8 stations in Thailand. The predictors are multiple variables from the output of operational dynamical models. The hindcast datasets span a period of 21 yr from 1983 to 2003. A downscaled prediction is made for each model separately within a leave-one-out cross-validation framework. The pattern projection method uses a moving window, which scans globally, in order to seek the most optimal predictor for each station. The final forecast is the average of the model downscaled precipitation forecasts using the best predictors and is referred to as DMME. It is found that DMME significantly improves the prediction skill by correcting the erroneous signs of the rainfall anomalies in coarse resolution predictions of general circulation models. The correlation coefficient between the prediction of DMME and the observation in Beijing of China reaches 0.71; the skill is improved to 0.75 for Korea and 0.61 for Thailand. The improvement of the prediction skills for the first two cases is attributed to three steps: coupled pattern selection, optimal predictor selection, and multi-model downscaled precipitation ensemble. For Thailand, we use the single-predictor prediction, which results in a lower prediction skill than the other two cases. This study indicates that the large-scale circulation variables, which are predicted by the current operational dynamical models, if selected well, can be used to make skillful predictions of local precipitation by means of appropriate statistical downscaling.展开更多
文摘Seasonal forecasting of the Indian summer monsoon by dynamically downscaling the CFSv2 output using a high resolution WRF model over the hindcast period of 1982-2008 has been performed in this study. The April start ensemble mean of the CFSv2 has been used to provide the initial and lateral boundary conditions for driving the WRF. The WRF model is integrated from 1st May through 1st October for each monsoon season. The analysis suggests that the WRF exhibits potential skill in improving the rainfall skill as well as the seasonal pattern and minimizes the meteorological errors as compared to the parent CFSv2 model. The rainfall pattern is simulated quite closer to the observation (IMD) in the WRF model over CFSv2 especially over the significant rainfall regions of India such as the Western Ghats and the central India. Probability distributions of the rainfall show that the rainfall is improved with the WRF. However, the WRF simulates copious amounts of rainfall over the eastern coast of India. Surface and upper air meteorological parameters show that the WRF model improves the simulation of the lower level and upper-level winds, MSLP, CAPE and PBL height. The specific humidity profiles show substantial improvement along the vertical column of the atmosphere which can be directly related to the net precipitable water. The CFSv2 underestimates the specific humidity along the vertical which is corrected by the WRF model. Over the Bay of Bengal, the WRF model overestimates the CAPE and specific humidity which may be attributed to the copious amount of rainfall along the eastern coast of India. Residual heating profiles also show that the WRF improves the thermodynamics of the atmosphere over 700 hPa and 400 hPa levels which helps in improving the rainfall simulation. Improvement in the land surface fluxes is also witnessed in the WRF model.
基金Botnia-Atlantica, an EU-programme financing cross border cooperation projects in Sweden, Finland and Norway, for their support of this work through the WindCoE project
文摘An accurate simulation of air temperature at local scales is crucial for the vast majority of weather and climate applications.In this work,a hybrid statistical–dynamical downscaling method and a high-resolution dynamical-only downscaling method are applied to daily mean,minimum and maximum air temperatures to investigate the quality of localscale estimates produced by downscaling.These two downscaling approaches are evaluated using station observation data obtained from the Finnish Meteorological Institute over a near-coastal region of western Finland.The dynamical downscaling is performed with the Weather Research and Forecasting(WRF)model,and the statistical downscaling method implemented is the Cumulative Distribution Function-transform(CDF-t).The CDF-t is trained using 20 years of WRF-downscaled Climate Forecast System Reanalysis data over the region at a 3-km spatial resolution for the central month of each season.The performance of the two methods is assessed qualitatively,by inspection of quantile-quantile plots,and quantitatively,through the Cramer-von Mises,mean absolute error,and root-mean-square error diagnostics.The hybrid approach is found to provide significantly more skillful forecasts of the observed daily mean and maximum air temperatures than those of the dynamical-only downscaling(for all seasons).The hybrid method proves to be less computationally expensive,and also to give more skillful temperature forecasts(at least for the Finnish near-coastal region).
基金supported by the National Key Research and Development Program of China(2017YFC1404100,2017YFC1404104)the National Natural Science Foundation of China(41775100,41830964)+1 种基金the Shandong Province’s"Taishan"Scientist Project(2018012919)the collaborative project between the Ocean University of China(OUC),Texas A&M University(TAMU)and the National Center for Atmospheric Research(NCAR)and completed through the International Laboratory for High Resolution Earth System Prediction(iHESP)-a collaboration among QNLM,TAMU and NCAR。
文摘A regional coupled prediction system for the Asia-Pacific(AP-RCP)(38°E-180°,20°S-60°N) area has been established.The AP-RCP system consists of WRF-ROMS(Weather Research and Forecast,and Regional Ocean Model System) coupled models combined with local observational information through dynamically downscaling coupled data assimilation(CDA).The system generates 18-day forecasts for the atmosphere and ocean environment on a daily quasi-operational schedule at Pilot National Laboratory for Marine Science and Technology(Qingdao)(QNLM),consisting of 2 different-resolution coupled models:27 km WRF coupled with 9 km ROMS,9 km WRF coupled with 3 km ROMS,while a version of 3 km WRF coupled with 3 km ROMS is in a test mode.This study is a first step to evaluate the impact of high-resolution coupled model with dynamically downscaling CDA on the extended-range predictions,focusing on forecasts of typhoon onset,improved precipitation and typhoon intensity forecasts as well as simulation of the Kuroshio current variability associated with mesoscale oceanic activities.The results show that for realizing the extended-range predictability of atmospheric and oceanic environment characterized by statistics of mesoscale activities,a fine resolution coupled model resolving local mesoscale phenomena with balanced and coherent coupled initialization is a necessary first step.The next challenges include improving the planetary boundary physics and the representation of air-sea and air-land interactions to enable the model to resolve kilometer or sub-kilometer processes.
文摘Mesoamerica and the Caribbean are low-latitude regions at risk for the effects of climate change. Global climate models provide large-scale assessment of climate drivers, but, at a horizontal resolution of 100 km, cannot resolve the effects of topography and land use as they impact the local temperature and precipitation that are keys to climate impacts. We developed a robust dynamical downscaling strategy that used the WRF regional climate model to downscale at 4 - 12 km resolution GCM results. Model verification demonstrates the need for such resolution of topography in order to properly simulate temperatures. Precipitation is more difficult to evaluate, being highly variable in time and space. Overall, a 36 km resolution is inadequate;12 km appears reasonable, especially in regions of low topography, but the 4 km resolution provides the best match with observations. This represents a tradeoff between model resolution and the computational effort needed to make simulations. A key goal is to provide climate change specialists in each country with the information they need to evaluate possible future climate change impacts.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant Nos. 40901202, 40925004), and the National High Technology Research and Development Program of China (Grant No. 2009AA122104). The input data for WRF model are from the Research Data Archive (RDA) which is maintained by the Computational and Information Systems Laboratory (CISL) at the National Center for Atmo- spheric Research (NCAR). The original data are available from the RDA (http://dss.ucar.edu) in Dataset No. ds083.2.
文摘The spatial resolution of general circulation models (GCMs) is too coarse to represent regional climate variations at the regional, basin, and local scales required for many environmental modeling and impact assessments. Weather research and forecasting model (WRF) is a nextgeneration, fully compressible, Euler non-hydrostatic mesoscale forecast model with a runtime hydrostatic option. This model is useful for downscaling weather and climate at the scales from one kilometer to thousands of kilometers, and is useful for deriving meteorological parameters required for hydrological simulation too. The objective of this paper is to validate WRF simulating 5 km/ 1 h air temperatures by daily observed data of China Meteorological Administration (CMA) stations, and by hourly in-situ data of the Watershed Allied Telemetry Experimental Research Project. The daily validation shows that the WRF simulation has good agreement with the observed data; the R2 between the WRF simulation and each station is more than 0.93; the absolute of meanbias error (MBE) for each station is less than 2℃; and the MBEs of Ejina, Mazongshan and Alxa stations are near zero, with R2 is more than 0.98, which can be taken as an unbiased estimation. The hourly validation shows that the WRF simulation can capture the basic trend of observed data, the MBE of each site is approximately 2℃, the R2 of each site is more than 0.80, with the highest at 0.95, and the computed and observed surface air temperature series show a significantly similar trend.
文摘本研究利用WRF-Chem(Weather Research and Forecasting model with online coupled Chemistry)模式对未来中国北方沙尘起沙过程变化进行了模拟预测。为了提高预测结果的准确度,研究综合考虑了气溶胶、温室气体和植被覆盖率等因素对天气、气候和起沙过程的影响。预测结果显示,2016~2029年西北部沙尘源地起沙量高于北部沙尘源地,地形和气候的差异是导致两地起沙过程及其季节变化差异的主要原因。两个沙尘源地四季起沙通量呈总体减少而部分季节增加的趋势,西北部沙尘源地起沙通量在春季总体呈上升趋势,在夏、秋和冬季呈下降趋势;北部沙尘源地起沙通量在春、夏和冬季呈下降趋势,在秋季呈微弱上升趋势。两个沙尘源地各季起沙通量的变化趋势由近地面风速主导,植被覆盖率、降水和地面温度等因素对起沙通量的年际波动有着重要影响。
基金Supported by the National Natural Science Foundation of China(41075065)State Key Laboratory of Severe Weather(2008LASWZF07)Chinese Academy of Meteorological Sciences Basic Research Fund(2009Y001 and 2010Z001)
文摘A pattern projection downscaling method is employed to predict monthly station precipitation. The predictand is the monthly precipitation at 1 station in China, 60 stations in Korea, and 8 stations in Thailand. The predictors are multiple variables from the output of operational dynamical models. The hindcast datasets span a period of 21 yr from 1983 to 2003. A downscaled prediction is made for each model separately within a leave-one-out cross-validation framework. The pattern projection method uses a moving window, which scans globally, in order to seek the most optimal predictor for each station. The final forecast is the average of the model downscaled precipitation forecasts using the best predictors and is referred to as DMME. It is found that DMME significantly improves the prediction skill by correcting the erroneous signs of the rainfall anomalies in coarse resolution predictions of general circulation models. The correlation coefficient between the prediction of DMME and the observation in Beijing of China reaches 0.71; the skill is improved to 0.75 for Korea and 0.61 for Thailand. The improvement of the prediction skills for the first two cases is attributed to three steps: coupled pattern selection, optimal predictor selection, and multi-model downscaled precipitation ensemble. For Thailand, we use the single-predictor prediction, which results in a lower prediction skill than the other two cases. This study indicates that the large-scale circulation variables, which are predicted by the current operational dynamical models, if selected well, can be used to make skillful predictions of local precipitation by means of appropriate statistical downscaling.