A conceptual model for microscopic-macroscopic slow-fast stochastic systems is considered. A dynamical reduction procedure is presented in order to extract effective dynamics for this kind of systems. Under appropriat...A conceptual model for microscopic-macroscopic slow-fast stochastic systems is considered. A dynamical reduction procedure is presented in order to extract effective dynamics for this kind of systems. Under appropriate assumptions, the effective system is shown to approximate the original system, in the sense of a probabilistic convergence.展开更多
The dynamics of blood lead (Pb-B) and blood zinc protoporphyrin (ZPP-B) of women in early pregnancy and parturient women with lead exposure and the effects on fetus development were investigated. Pb-B of lead-exposed ...The dynamics of blood lead (Pb-B) and blood zinc protoporphyrin (ZPP-B) of women in early pregnancy and parturient women with lead exposure and the effects on fetus development were investigated. Pb-B of lead-exposed women was high: 0.984 μmol/L (20.38 μg/dl) and ZPP was 84.52μg/dl. Cord blood Pb-B was 0.896 μmol/L(18.56μg/dl)and cord blood ZPP was 69.24μg/dl. In the control group, Pb-B was 0.261μmol/L(5.41μg/dl), ZPP-B, 37.59 μg/dl, cord blood, Pb-B 0.34 μmol/L (7.93 μg/dl), and cord ZPP-B 49.0μg/dl. There was a significant correlation between blood lead and blood ZPP, maternal Pb-B and cord Pb-B, maternal Pb-B and cord ZPP-B. The significance of the consistency of high level Pb-B and the effects on fetus development is discussed.展开更多
Effective Hamiltonians in periodically driven systems have received widespread attention for realization of novel quantum phases, non-equilibrium phase transition, and Majorana mode. Recently, the study of effective H...Effective Hamiltonians in periodically driven systems have received widespread attention for realization of novel quantum phases, non-equilibrium phase transition, and Majorana mode. Recently, the study of effective Hamiltonian using various methods has gained great interest. We consider a vector differential equation of motion to derive the effective Hamiltonian for any periodically driven two-level system, and the dynamics of the spin vector are an evolution under the Bloch sphere. Here, we investigate the properties of this equation and show that a sudden change of the effective Hamiltonian is expected. Furthermore, we present several exact relations, whose expressions are independent of the different starting points. Moreover, we deduce the effective Hamiltonian from the high-frequency limit, which approximately equals the results in previous studies. Our results show that the vector differential equation of motion is not affected by a convergence problem, and thus, can be used to numerically investigate the effective models in any periodic modulating system. Finally, we anticipate that the proposed method can be applied to experimental platforms that require time-periodic modulation, such as ultracold atoms and optical lattices.展开更多
We use linear entropy of an exact quantum state to study the entanglement between internal electronic states and external motional states for a two-level atom held in an amplitude-modulated and tilted optical lattice....We use linear entropy of an exact quantum state to study the entanglement between internal electronic states and external motional states for a two-level atom held in an amplitude-modulated and tilted optical lattice. Starting from an unentangled initial state associated with the regular 'island' of classical phase space, it is demonstrated that the quantum resonance leads to entanglement generation, the chaotic parameter region results in the increase of the generation speed, and the symmetries of the initial probability distribution determine the final degree of entanglement. The entangled initial states are associated with the classical 'chaotic sea', which do not affect the final entanglement degree for the same initial symmetry. The results may be useful in engineering quantum dynamics for quantum information processing.展开更多
It is important to understand the dynamics of malaria vectors in implementing malaria control strategies. Six villages were selected from different sections in the Three Gorges Reservoir fc,r exploring the relationshi...It is important to understand the dynamics of malaria vectors in implementing malaria control strategies. Six villages were selected from different sections in the Three Gorges Reservoir fc,r exploring the relationship between the climatic |:actors and its malaria vector density from 1997 to 2007 using the auto-regressive linear model regressi^n method. The result indicated that both temperature and precipitation were better modeled as quadratic rather than linearly related to the density of Anopheles sinensis.展开更多
Steel strips are the main of steel products and flatness is an important quality indicator of steel strips. Flatness control is the key and highly difficult technique of strip mills. The bottle-neck restricting the im...Steel strips are the main of steel products and flatness is an important quality indicator of steel strips. Flatness control is the key and highly difficult technique of strip mills. The bottle-neck restricting the improvement of flatness control techniques is that the research on flatness theories and control mathematic models is not in accordance with the requirement of technique developments. To build a simple, rapid and accurate explicit formulation control model has become an urgent need for the development of flatness control technique. This paper puts forward the conception of dynamic effective matrix based on the effective matrix method for flatness control proposed by the authors under the consideration of the influence of the change of parameters in roiling processes on the effective matrix, and the concept is validated by industrial productions. Three methods of the effective matrix generation are induced: the calculation method based on the flatness prediction model; the calculation method based on the data excavation in rolling processes and the direct calculation method based on the network model. A fuzzy neural network effective matrix model is built based on the clusters, and then the network structure is optimized and the high-speed-calculation problem of the dynamic effective matrix is solved. The flatness control scheme for cold strip mills is proposed based on the dynamic effective matrix. On stand 5 of the 1 220 mm five-stand 4-high cold strip tandem mill, the industrial experiment with the control methods of tilting roll and bending roll is done by the control scheme of the static effective matrix and the dynamic effective matrix, respectively. The experiment result proves that the control effect of the dynamic effective matrix is much better than that of the static effective matrix. This paper proposes a new idea and method for the dynamic flatness control in the rolling processes of cold strip mills and develops the theory and model of the flatness control effective matrix method.展开更多
In the process of mining coalbed methane(CBM),an unsteady state often arises due to the rapid extraction,release and pressure relief of CBM.In this case,the effective stress of coal changes dynamically,affecting the s...In the process of mining coalbed methane(CBM),an unsteady state often arises due to the rapid extraction,release and pressure relief of CBM.In this case,the effective stress of coal changes dynamically,affecting the stability of the gassy coal seam.In this paper,gas release tests of gassy coal under conventional triaxial compression were performed,and the dynamic effective stress(DES)during gas release was obtained indirectly based on a constitutive equation and deformation of coal.The results show that the maximum increases in DES caused by the release of free gas and adsorbed gas under the stress of 1.1 MPa were 0.811 and 5.418 MPa,respectively,which seriously affected the stress state of the coal.During the gas release,the free gas pressure and the adsorbed gas volume were the parameters that directly affected the DES and showed a positive linear relationship with the DES with an intercept of zero.The DES of the coal sample increased exponentially with time,which was determined by the contents of free and adsorbed gas.Based on the experimental results and theoretical analysis,an effective stress model was obtained for loaded gassy coal during gas release.The results of verification indicated accuracy greater than 99%.展开更多
The frequency-dependent dynamic effective properties (phase velocity, attenuation and elastic modulus) of porous materials are studied numerically. The coherent plane longitudinal and shear wave equations, which are o...The frequency-dependent dynamic effective properties (phase velocity, attenuation and elastic modulus) of porous materials are studied numerically. The coherent plane longitudinal and shear wave equations, which are obtained by averaging on the multiple scattering fields, are used to evaluate the frequency-dependent dynamic effective properties of a porous material. It is found that the prediction of the dynamic effective properties includes the size effects of voids which are not included in most prediction of the traditional static effective properties. The prediction of the dynamic effective elastic modulus at a relatively low frequency range is compared with that of the traditional static effective elastic modulus, and the dynamic effective elastic modulus is found to be very close to the Hashin-Shtrikman upper bound.展开更多
The relationship between capillary pressure and saturation plays a critical role in the characterization of two-phase flow and transport in aquifers and oil reservoirs. This relationship is usually determined under th...The relationship between capillary pressure and saturation plays a critical role in the characterization of two-phase flow and transport in aquifers and oil reservoirs. This relationship is usually determined under the static condition, where capillary pressure is the only function of saturation. However,considerable experiments have suggested that the dependence of capillary pressure on desaturation rate is under the dynamic condition. Thus, a more general description of capillary pressure that includes dynamic capillary effect has been approved widely. A comprehensive understanding of the dynamic capillary effect is needed for the investigation of the two-phase flow in porous media by various methods. In general, dynamic capillary effect in porous media can be studied through the laboratory experiment, pore-to macro-scale modeling, and artificial neural network. Here, main principle and research procedures of each method are reviewed in detail. Then, research progress, disadvantages and advantages are discussed, respectively. In addition, upscaling study from pore-to macro-scale are introduced, which explains the difference between laboratory experiment and pore-scale modeling. At last, several future perspectives and recommendations for optimal solution of dynamic capillary effect are presented.展开更多
According to the results of experiments and theoretical analysis, a phenomenon called "capture effect" is put forward, which could be used to describe the particles dynamic behavior of electrorheological (ER) susp...According to the results of experiments and theoretical analysis, a phenomenon called "capture effect" is put forward, which could be used to describe the particles dynamic behavior of electrorheological (ER) suspensions. Then a "structure-force" mathematical model is established to explain this effect based on electrostatic energy density equation. The analysis results show that the dynamic coupling process of ER suspensions under an external electric filed is the function not only of the electric intensity, but also of the dielectric properties and the structure form.展开更多
To compensate for the shortcomings of quasi-static law in anti-fatigue analysis of foundry crane metal structures,the fatigue life evaluation method of foundry crane metal structure considering load dynamic response a...To compensate for the shortcomings of quasi-static law in anti-fatigue analysis of foundry crane metal structures,the fatigue life evaluation method of foundry crane metal structure considering load dynamic response and crack closure effect is proposed.In line with the theory of mechanical vibration,a dynamic model of crane structure during the working cycle is constructed,and dynamic coefficients under diverse actions are analysed.Calculation models of the internal force dynamic change process of dangerous cross-sections and a simulation model of first principal stress-time history are established by using the steel structure design criteria,which is utilised to extract the change of first principal stress of danger points over time.Then,the double-parameter stress spectrum is obtained by the rain flow counting method.The fatigue life calculation formula is corrected by introducing a crack closure parameter that can be calculated by the stress ratio and the effective stress ratio.Under the finite element model imported into Msc.Patran,crack propagation analysis is performed by the growth method in the fatigue integration module Msc.Fatigue.Taking the metal structure of a 100/40t-28.5m foundry crane with track offset as an example,the accuracy of calculation results and the feasibility and applicability of the proposed method are verified by theoretical calculation and finite element simulation,which provide a theoretical basis for improvement of the fatigue resistance design of foundry cranes.展开更多
Based on the characteristics of the top coal thickness of the fully mechanized caving in special thick coal seam,the long distance of coal gangue caving,as well as the different sizes of the coal gangue broken fragmen...Based on the characteristics of the top coal thickness of the fully mechanized caving in special thick coal seam,the long distance of coal gangue caving,as well as the different sizes of the coal gangue broken fragment dimension and spatial variation of drop flow,this paper uses laboratory dispersion simulation experiment and theoretical analysis to study the arch structure effect and its influence rule on the top coal loss in the process of coal gangue flow.Research shows that in the process of coal gangue flow,arch structure can be formed in three types:the lower arch structure,middle arch structure,and upper arch structure.Moreover,the arch structure has the characteristics of dynamic random arch,the formation probability of dynamic random arch with different layers is not the same,dynamic random arch caused the reduction of the top coal fluency;analyzing the dynamic random arch formation mechanism,influencing factors,and the conditions of instability;the formation probability of the lower arch structure is the highest,the whole coal arch and the coal gangue arch structure has the greatest impact on top coal loss.Therefore,to prevent or reduce the formation of lower whole coal arch structure,the lower coal gangue arch structure and the middle whole coal arch structure is the key to reduce the top coal loss.The research conclusion provides theoretical basis for the further improvement of the top coal recovery rate of the fully mechanized caving in extra thick coal seam.展开更多
In order to study the effect of dynamic recrystallization on the metal flow behavior during thermal deformation,the elevated temperature compression experiments of CuCrZr alloy and 35CrMo steel are carried out using G...In order to study the effect of dynamic recrystallization on the metal flow behavior during thermal deformation,the elevated temperature compression experiments of CuCrZr alloy and 35CrMo steel are carried out using Gleeble-3810 thermal simulator.It is proved that the samples underwent obvious dynamic recrystallization behavior during thermal deformation by microstructure observation of deformed specimens.The size of recrystallized grains increases as the temperature improved and the strain rate decreased.Meanwhile,the net softening rate caused by dynamic recrystallization is determined based on the stress-dislocation relationship.It can be found that the value of net softening rate increases quadratically as the Z parameter decreases,and the dynamic recrystallization net softening rate of CuCrZr alloy and 35CrMo steel are calculated to be 21.9%and 29.8%,respectively.Based on the dynamic recrystallization softening effect proposed,the novel elevated temperature flow constitutive models of two different alloys are proposed,and the related parameters are well defined and solved in detail.The predicted values of the obtained models are agreed well with the experimental values.展开更多
We investigate the effects of dynamical Casimir effect in superradiant light scattering by Bose-Einstein condensate in an optomechanical cavity. The system is studied using both classical and quantized mirror motions....We investigate the effects of dynamical Casimir effect in superradiant light scattering by Bose-Einstein condensate in an optomechanical cavity. The system is studied using both classical and quantized mirror motions. The cavity frequency is harmonically modulated in time for both the cases. The main quantity of interest is the number of intracavity scattered photons. The system has been investigated under the weak and strong modulations. It has been observed that the amplitude of the scattered photons is more for the classical mirror motion than the quantized mirror motion. Also, initially, the amplitude of scattered photons is high for lower modulation amplitude than higher modulation amplitude. We also found that the behavior of the plots are similar under strong and weak modulations for the quantized mirror motion.展开更多
Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied throug...Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied through theoretical analysis,experimentand field measurement.The results show that high-pressure pulsed water jet has threedynamic properties.What's more,the three dynamic effects can be found in low-permeabilitycoal seams.A new pulsed water jet with 200-1 000 Hz oscillation frequency andpeak pressure 2.5 times than average pressure was introduced.During bubble collapsing,sound vibration and instantaneous high pressures over 100 MPa enhanced the cuttingability of the high-pressure jet.Through high-pressure pulsed water jet drilling and slotting,the exposure area of coal bodies was greatly enlarged and pressure of the coal seamsrapidly decreased.Therefore,the permeability of coal seams was improved and gas absorptionrate also decreased.Application results show that gas adsorption rate decreasedby 30%-40%and the penetrability coefficient increased 100 times.This proves that high-pressurepulsed water is more efficient than other conventional methods.展开更多
The dynamic effective shear strength of saturated sand under cyclic loading is discussed in this paper.The discussion includes the transient time depen- dency behaviors based on the analysis of the results obtained in...The dynamic effective shear strength of saturated sand under cyclic loading is discussed in this paper.The discussion includes the transient time depen- dency behaviors based on the analysis of the results obtained in conventional cyclic triaxial tests and cyclic torsional shear triaxial tests.It has been found that the dy- namic effective shear strength is composed of effective frictional resistance and viscous resistance,which are characterized by the strain rate dependent feature of strength magnitude,the coupling of consolidation stress with cyclic stress and the dependency of time needed to make the soil strength sufficiently mobilized,and can also be ex- pressed by the extended Mohr-Coulomb's law.The two strength parameters of the dynamic effective internal frictional angle φd and the dynamic viscosity coefficient η are determined.The former is unvaried for different number of cyclic loading,dy- namic stress form and consolidation stress ratio.And the later is unvaried for the different dynamic shear strain rate γt developed during the sand liquefaction,but increases with the increase of initial density of sand.The generalization of dynamic effective stress strength criterion in the 3-dimensional effective stress space is studied in detail for the purpose of its practical use.展开更多
Interaction between beta-lactum antibiotic drug ciprofloxacin hydrochloride(CFH)and cationic surfactant cetyltrimethylammonium bromide(CTAB)was performed conductometrically in aqueous as well as in the occurrence of d...Interaction between beta-lactum antibiotic drug ciprofloxacin hydrochloride(CFH)and cationic surfactant cetyltrimethylammonium bromide(CTAB)was performed conductometrically in aqueous as well as in the occurrence of different salts(NaCl,KCl as well as NH_4Cl)over the temperature range of 298.15–323.15 K at the regular interval of 5 K.CFH drug has been suggested for the treatment of bacterial infections such as urinary tract infections and acute sinusitis.A clear critical micelle concentration(CMC)was obtained for pure CTAB as well as(CFH+CTAB)mixed systems.The decrease in CMC values of CTAB caused by the addition of CFH reveals the existence of the interaction between the components and therefore it is the indication of micelle formation at lower concentration of CTAB and their CMC values further decrease in attendance of salts.A nonlinear behavior in the CMC versus T plot was observed in all the cases.The ΔG_m^0 values are found to be negative in present study systems demonstrated the stability of the solution.The values of ΔH_m^0 and ΔS_m^0 reveal the existence of hydrophobic and electrostatic interactions between CFH and CTAB.The thermodynamic properties of transfer for the micellization were also evaluated and discussed in detail.Molecular dynamic simulation disclosed that environment of water and salts have impact on the hydrophobic interaction between CFH and CTAB.In water and salts,CTAB adopts spherical micelle in which charged hydrophilic groups are interacted with waters whereas hydrophobic tails form the core of the micelle.This hydrophobic core region is highly conserved and protected.In addition,micelle formation is more favorable in aqueous Na Cl solution than other solutions.展开更多
The stability of a backfill wall is critical to implement gob-side entry driving technology in which a small coal pillar is substituted by a waste backfill wall. Based on features of surrounding rock structures in the...The stability of a backfill wall is critical to implement gob-side entry driving technology in which a small coal pillar is substituted by a waste backfill wall. Based on features of surrounding rock structures in the backfill wall, we propose a mechanical model on the structural effect of a soft-hard backfill wall using theory analysis, physical experiments and a numerical simulation. The results show thatChe deformation of the structure of the soft-hard backfill wall is coordinated with the roof and floor. The soft structure on the top of the backfill wall can absorb the energy in the roof by its large deformation and adapt to the given deformation caused by the rotation and subsidence of a key rock block. The hard structure at the bottom of the backfill wall can absorb the strong supporting resistance from the top surrounding rock. The soft structure on the top protecting the hard bottom structure by its large deformation contributes to the stability of the entire backfill wall. An application indicated that the stress in the backfill wall effec- tively decreased and its deformation was significantly reduced after the top coal remained. This ensured the stability of the backfill wall.展开更多
Molecular dynamics method was employed to study the binding energies of the selected crystal planes of the 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane(HMX)/1,3-dimethyl-2-imidazolidinone(DMI) cocrystal in differ...Molecular dynamics method was employed to study the binding energies of the selected crystal planes of the 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane(HMX)/1,3-dimethyl-2-imidazolidinone(DMI) cocrystal in different molecular molar ratios. The mechanical properties were estimated in different molar ratios. Solvent effects were evaluated and the cooperativity effects were discussed in the HMX···HF···DMI ternary by using the M06-2x/6-311+G(2df,2p) and MP2(full)/6-311+G(2df,2p) methods. The results indicate that the substituted patterns(020) and(100) own the highest binding energies. The stabilities of cocrystals in the 1:1 and 2:1 ratios are the greatest, and thus the HMX/DMI cocrystals prefer cocrystallizing in the 1:1 and 2:1 molar ratios, which have good mechanical properties. The sensitivity change of cocrystal originates from not only the formation of intermolecular interaction but also the increment of bond dissociation energy of the N–NO2 bond. The cooperativity effect appears in the linear complex while the anti-cooperativity effect is found in the cyclic system. DMI binding to HMX is not energetically and structurally favored in the presence of HF. This is perhaps the reason that the solvent with large dielectric constant weakens the stability of the HMX/DMI cocrystals. Therefore, the solvents with low dielectric constants should be chosen in the preparation of HMX/DMI cocrystals.展开更多
The closed-form solutions of the dynamic problem of heterogeneous piezoelectric materials are formulated by introducing polarizations into a reference medium and using the generalized reciprocity theorem.These solutio...The closed-form solutions of the dynamic problem of heterogeneous piezoelectric materials are formulated by introducing polarizations into a reference medium and using the generalized reciprocity theorem.These solutions can be reduced to the ones of an elastodynamic problem.Based on the effective medium method,these closedform solutions can be used to establish the self-consistent equations about the frequencydependent effective parameters,which can be numerically solved by iteration.Theoretical predictions are compared with the experimental results,and good agreement can be found.Furthermore,the analyses on the effects of microstructure and wavelength on the effective properties,resonance frequencies,and attenuation are also presented,which may provide some guidance for the microstructure design and analysis of piezoelectric composites.展开更多
基金supported by NSF of China (10901065, 10971225, and11028102)the NSF Grants 1025422 and 0731201the Cheung Kong Scholars Program, and an open research grant from the State Key Laboratory for Nonlinear Mechanics at the Chinese Academy of Sciences
文摘A conceptual model for microscopic-macroscopic slow-fast stochastic systems is considered. A dynamical reduction procedure is presented in order to extract effective dynamics for this kind of systems. Under appropriate assumptions, the effective system is shown to approximate the original system, in the sense of a probabilistic convergence.
文摘The dynamics of blood lead (Pb-B) and blood zinc protoporphyrin (ZPP-B) of women in early pregnancy and parturient women with lead exposure and the effects on fetus development were investigated. Pb-B of lead-exposed women was high: 0.984 μmol/L (20.38 μg/dl) and ZPP was 84.52μg/dl. Cord blood Pb-B was 0.896 μmol/L(18.56μg/dl)and cord blood ZPP was 69.24μg/dl. In the control group, Pb-B was 0.261μmol/L(5.41μg/dl), ZPP-B, 37.59 μg/dl, cord blood, Pb-B 0.34 μmol/L (7.93 μg/dl), and cord ZPP-B 49.0μg/dl. There was a significant correlation between blood lead and blood ZPP, maternal Pb-B and cord Pb-B, maternal Pb-B and cord ZPP-B. The significance of the consistency of high level Pb-B and the effects on fetus development is discussed.
基金supported by the National Natural Science Foundation of China (Grant No. 11774328)。
文摘Effective Hamiltonians in periodically driven systems have received widespread attention for realization of novel quantum phases, non-equilibrium phase transition, and Majorana mode. Recently, the study of effective Hamiltonian using various methods has gained great interest. We consider a vector differential equation of motion to derive the effective Hamiltonian for any periodically driven two-level system, and the dynamics of the spin vector are an evolution under the Bloch sphere. Here, we investigate the properties of this equation and show that a sudden change of the effective Hamiltonian is expected. Furthermore, we present several exact relations, whose expressions are independent of the different starting points. Moreover, we deduce the effective Hamiltonian from the high-frequency limit, which approximately equals the results in previous studies. Our results show that the vector differential equation of motion is not affected by a convergence problem, and thus, can be used to numerically investigate the effective models in any periodic modulating system. Finally, we anticipate that the proposed method can be applied to experimental platforms that require time-periodic modulation, such as ultracold atoms and optical lattices.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11175064 and 11475060the Construct Program of the National Key Discipline of Chinathe Hunan Provincial Innovation Foundation for Postgraduates under Grant No CX2014B195
文摘We use linear entropy of an exact quantum state to study the entanglement between internal electronic states and external motional states for a two-level atom held in an amplitude-modulated and tilted optical lattice. Starting from an unentangled initial state associated with the regular 'island' of classical phase space, it is demonstrated that the quantum resonance leads to entanglement generation, the chaotic parameter region results in the increase of the generation speed, and the symmetries of the initial probability distribution determine the final degree of entanglement. The entangled initial states are associated with the classical 'chaotic sea', which do not affect the final entanglement degree for the same initial symmetry. The results may be useful in engineering quantum dynamics for quantum information processing.
基金funded by the Public Project(20080219)of the Ministry of Science and Technology,PRC
文摘It is important to understand the dynamics of malaria vectors in implementing malaria control strategies. Six villages were selected from different sections in the Three Gorges Reservoir fc,r exploring the relationship between the climatic |:actors and its malaria vector density from 1997 to 2007 using the auto-regressive linear model regressi^n method. The result indicated that both temperature and precipitation were better modeled as quadratic rather than linearly related to the density of Anopheles sinensis.
基金supported by National Natural Science Foundation of China(Grant No. 50675186)Hebei Provincial Major Natural Science Foundation of China (Grant No. E2006001038)
文摘Steel strips are the main of steel products and flatness is an important quality indicator of steel strips. Flatness control is the key and highly difficult technique of strip mills. The bottle-neck restricting the improvement of flatness control techniques is that the research on flatness theories and control mathematic models is not in accordance with the requirement of technique developments. To build a simple, rapid and accurate explicit formulation control model has become an urgent need for the development of flatness control technique. This paper puts forward the conception of dynamic effective matrix based on the effective matrix method for flatness control proposed by the authors under the consideration of the influence of the change of parameters in roiling processes on the effective matrix, and the concept is validated by industrial productions. Three methods of the effective matrix generation are induced: the calculation method based on the flatness prediction model; the calculation method based on the data excavation in rolling processes and the direct calculation method based on the network model. A fuzzy neural network effective matrix model is built based on the clusters, and then the network structure is optimized and the high-speed-calculation problem of the dynamic effective matrix is solved. The flatness control scheme for cold strip mills is proposed based on the dynamic effective matrix. On stand 5 of the 1 220 mm five-stand 4-high cold strip tandem mill, the industrial experiment with the control methods of tilting roll and bending roll is done by the control scheme of the static effective matrix and the dynamic effective matrix, respectively. The experiment result proves that the control effect of the dynamic effective matrix is much better than that of the static effective matrix. This paper proposes a new idea and method for the dynamic flatness control in the rolling processes of cold strip mills and develops the theory and model of the flatness control effective matrix method.
基金This research was funded by the National Natural Science Foundation of China(No.52174081)the China Postdoctoral Science Foundation(No.2021M702001)+1 种基金the Postdoctoral Innovation Project of Shandong Province(No.202102002)the Natural Science Foundation of Shandong Province(No.2019GSF111036).
文摘In the process of mining coalbed methane(CBM),an unsteady state often arises due to the rapid extraction,release and pressure relief of CBM.In this case,the effective stress of coal changes dynamically,affecting the stability of the gassy coal seam.In this paper,gas release tests of gassy coal under conventional triaxial compression were performed,and the dynamic effective stress(DES)during gas release was obtained indirectly based on a constitutive equation and deformation of coal.The results show that the maximum increases in DES caused by the release of free gas and adsorbed gas under the stress of 1.1 MPa were 0.811 and 5.418 MPa,respectively,which seriously affected the stress state of the coal.During the gas release,the free gas pressure and the adsorbed gas volume were the parameters that directly affected the DES and showed a positive linear relationship with the DES with an intercept of zero.The DES of the coal sample increased exponentially with time,which was determined by the contents of free and adsorbed gas.Based on the experimental results and theoretical analysis,an effective stress model was obtained for loaded gassy coal during gas release.The results of verification indicated accuracy greater than 99%.
基金This work was financially supported by the National Natural Science Foundation of China (No.10272003, No. 10032010, and No. 10372004) the Talent Foundation of the University of Sciences and Technology Beijing.
文摘The frequency-dependent dynamic effective properties (phase velocity, attenuation and elastic modulus) of porous materials are studied numerically. The coherent plane longitudinal and shear wave equations, which are obtained by averaging on the multiple scattering fields, are used to evaluate the frequency-dependent dynamic effective properties of a porous material. It is found that the prediction of the dynamic effective properties includes the size effects of voids which are not included in most prediction of the traditional static effective properties. The prediction of the dynamic effective elastic modulus at a relatively low frequency range is compared with that of the traditional static effective elastic modulus, and the dynamic effective elastic modulus is found to be very close to the Hashin-Shtrikman upper bound.
基金financially supported by the National Natural Science Foundation of China (No. 42102149)the Fundamental Research Funds for the Central Universities (No. 2462021YXZZ005)。
文摘The relationship between capillary pressure and saturation plays a critical role in the characterization of two-phase flow and transport in aquifers and oil reservoirs. This relationship is usually determined under the static condition, where capillary pressure is the only function of saturation. However,considerable experiments have suggested that the dependence of capillary pressure on desaturation rate is under the dynamic condition. Thus, a more general description of capillary pressure that includes dynamic capillary effect has been approved widely. A comprehensive understanding of the dynamic capillary effect is needed for the investigation of the two-phase flow in porous media by various methods. In general, dynamic capillary effect in porous media can be studied through the laboratory experiment, pore-to macro-scale modeling, and artificial neural network. Here, main principle and research procedures of each method are reviewed in detail. Then, research progress, disadvantages and advantages are discussed, respectively. In addition, upscaling study from pore-to macro-scale are introduced, which explains the difference between laboratory experiment and pore-scale modeling. At last, several future perspectives and recommendations for optimal solution of dynamic capillary effect are presented.
文摘According to the results of experiments and theoretical analysis, a phenomenon called "capture effect" is put forward, which could be used to describe the particles dynamic behavior of electrorheological (ER) suspensions. Then a "structure-force" mathematical model is established to explain this effect based on electrostatic energy density equation. The analysis results show that the dynamic coupling process of ER suspensions under an external electric filed is the function not only of the electric intensity, but also of the dielectric properties and the structure form.
基金the National Science-technology Support Projects for the 13th Five-year Plan(2017YFC0805703-4).
文摘To compensate for the shortcomings of quasi-static law in anti-fatigue analysis of foundry crane metal structures,the fatigue life evaluation method of foundry crane metal structure considering load dynamic response and crack closure effect is proposed.In line with the theory of mechanical vibration,a dynamic model of crane structure during the working cycle is constructed,and dynamic coefficients under diverse actions are analysed.Calculation models of the internal force dynamic change process of dangerous cross-sections and a simulation model of first principal stress-time history are established by using the steel structure design criteria,which is utilised to extract the change of first principal stress of danger points over time.Then,the double-parameter stress spectrum is obtained by the rain flow counting method.The fatigue life calculation formula is corrected by introducing a crack closure parameter that can be calculated by the stress ratio and the effective stress ratio.Under the finite element model imported into Msc.Patran,crack propagation analysis is performed by the growth method in the fatigue integration module Msc.Fatigue.Taking the metal structure of a 100/40t-28.5m foundry crane with track offset as an example,the accuracy of calculation results and the feasibility and applicability of the proposed method are verified by theoretical calculation and finite element simulation,which provide a theoretical basis for improvement of the fatigue resistance design of foundry cranes.
基金the Independent Research Subject of State Key Laboratory of Coal Resources and Mine Safety of China University of Mining and Technology (No.SKLCRSM12X03)the Scientific Research and Innovation Project for College Graduates in Jiangsu (No.CXZZ13_0947)+1 种基金Top-Notch Academic Programs of Jiangsu Higher Education Institutionsthe Priority Academic Development Program of Jiangsu Higher Education Institutions
文摘Based on the characteristics of the top coal thickness of the fully mechanized caving in special thick coal seam,the long distance of coal gangue caving,as well as the different sizes of the coal gangue broken fragment dimension and spatial variation of drop flow,this paper uses laboratory dispersion simulation experiment and theoretical analysis to study the arch structure effect and its influence rule on the top coal loss in the process of coal gangue flow.Research shows that in the process of coal gangue flow,arch structure can be formed in three types:the lower arch structure,middle arch structure,and upper arch structure.Moreover,the arch structure has the characteristics of dynamic random arch,the formation probability of dynamic random arch with different layers is not the same,dynamic random arch caused the reduction of the top coal fluency;analyzing the dynamic random arch formation mechanism,influencing factors,and the conditions of instability;the formation probability of the lower arch structure is the highest,the whole coal arch and the coal gangue arch structure has the greatest impact on top coal loss.Therefore,to prevent or reduce the formation of lower whole coal arch structure,the lower coal gangue arch structure and the middle whole coal arch structure is the key to reduce the top coal loss.The research conclusion provides theoretical basis for the further improvement of the top coal recovery rate of the fully mechanized caving in extra thick coal seam.
基金Project(2019zzts525)supported by the Fundamental Research Funds for the Central Universities,ChinaProjects(U1837207,U1637601)supported by the National Natural Science Foundation of China
文摘In order to study the effect of dynamic recrystallization on the metal flow behavior during thermal deformation,the elevated temperature compression experiments of CuCrZr alloy and 35CrMo steel are carried out using Gleeble-3810 thermal simulator.It is proved that the samples underwent obvious dynamic recrystallization behavior during thermal deformation by microstructure observation of deformed specimens.The size of recrystallized grains increases as the temperature improved and the strain rate decreased.Meanwhile,the net softening rate caused by dynamic recrystallization is determined based on the stress-dislocation relationship.It can be found that the value of net softening rate increases quadratically as the Z parameter decreases,and the dynamic recrystallization net softening rate of CuCrZr alloy and 35CrMo steel are calculated to be 21.9%and 29.8%,respectively.Based on the dynamic recrystallization softening effect proposed,the novel elevated temperature flow constitutive models of two different alloys are proposed,and the related parameters are well defined and solved in detail.The predicted values of the obtained models are agreed well with the experimental values.
文摘We investigate the effects of dynamical Casimir effect in superradiant light scattering by Bose-Einstein condensate in an optomechanical cavity. The system is studied using both classical and quantized mirror motions. The cavity frequency is harmonically modulated in time for both the cases. The main quantity of interest is the number of intracavity scattered photons. The system has been investigated under the weak and strong modulations. It has been observed that the amplitude of the scattered photons is more for the classical mirror motion than the quantized mirror motion. Also, initially, the amplitude of scattered photons is high for lower modulation amplitude than higher modulation amplitude. We also found that the behavior of the plots are similar under strong and weak modulations for the quantized mirror motion.
基金Supported by the National Natural Science Foundation of China(50604019)the Innovation Team Foundation of China(50621403)
文摘Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied through theoretical analysis,experimentand field measurement.The results show that high-pressure pulsed water jet has threedynamic properties.What's more,the three dynamic effects can be found in low-permeabilitycoal seams.A new pulsed water jet with 200-1 000 Hz oscillation frequency andpeak pressure 2.5 times than average pressure was introduced.During bubble collapsing,sound vibration and instantaneous high pressures over 100 MPa enhanced the cuttingability of the high-pressure jet.Through high-pressure pulsed water jet drilling and slotting,the exposure area of coal bodies was greatly enlarged and pressure of the coal seamsrapidly decreased.Therefore,the permeability of coal seams was improved and gas absorptionrate also decreased.Application results show that gas adsorption rate decreasedby 30%-40%and the penetrability coefficient increased 100 times.This proves that high-pressurepulsed water is more efficient than other conventional methods.
基金The project supported by the National Natural Science Foundation of China (10172070)
文摘The dynamic effective shear strength of saturated sand under cyclic loading is discussed in this paper.The discussion includes the transient time depen- dency behaviors based on the analysis of the results obtained in conventional cyclic triaxial tests and cyclic torsional shear triaxial tests.It has been found that the dy- namic effective shear strength is composed of effective frictional resistance and viscous resistance,which are characterized by the strain rate dependent feature of strength magnitude,the coupling of consolidation stress with cyclic stress and the dependency of time needed to make the soil strength sufficiently mobilized,and can also be ex- pressed by the extended Mohr-Coulomb's law.The two strength parameters of the dynamic effective internal frictional angle φd and the dynamic viscosity coefficient η are determined.The former is unvaried for different number of cyclic loading,dy- namic stress form and consolidation stress ratio.And the later is unvaried for the different dynamic shear strain rate γt developed during the sand liquefaction,but increases with the increase of initial density of sand.The generalization of dynamic effective stress strength criterion in the 3-dimensional effective stress space is studied in detail for the purpose of its practical use.
文摘Interaction between beta-lactum antibiotic drug ciprofloxacin hydrochloride(CFH)and cationic surfactant cetyltrimethylammonium bromide(CTAB)was performed conductometrically in aqueous as well as in the occurrence of different salts(NaCl,KCl as well as NH_4Cl)over the temperature range of 298.15–323.15 K at the regular interval of 5 K.CFH drug has been suggested for the treatment of bacterial infections such as urinary tract infections and acute sinusitis.A clear critical micelle concentration(CMC)was obtained for pure CTAB as well as(CFH+CTAB)mixed systems.The decrease in CMC values of CTAB caused by the addition of CFH reveals the existence of the interaction between the components and therefore it is the indication of micelle formation at lower concentration of CTAB and their CMC values further decrease in attendance of salts.A nonlinear behavior in the CMC versus T plot was observed in all the cases.The ΔG_m^0 values are found to be negative in present study systems demonstrated the stability of the solution.The values of ΔH_m^0 and ΔS_m^0 reveal the existence of hydrophobic and electrostatic interactions between CFH and CTAB.The thermodynamic properties of transfer for the micellization were also evaluated and discussed in detail.Molecular dynamic simulation disclosed that environment of water and salts have impact on the hydrophobic interaction between CFH and CTAB.In water and salts,CTAB adopts spherical micelle in which charged hydrophilic groups are interacted with waters whereas hydrophobic tails form the core of the micelle.This hydrophobic core region is highly conserved and protected.In addition,micelle formation is more favorable in aqueous Na Cl solution than other solutions.
基金Financial supports for this work, provided by the New Century Excellent Talents in University (No.NCET-05-0480)the Research Fund of the State Key Laboratory of Coal Resources and Mine Safety of CUMT (No.09KF06)the Scientific Research Fund of CUMT (No.OA090239)
文摘The stability of a backfill wall is critical to implement gob-side entry driving technology in which a small coal pillar is substituted by a waste backfill wall. Based on features of surrounding rock structures in the backfill wall, we propose a mechanical model on the structural effect of a soft-hard backfill wall using theory analysis, physical experiments and a numerical simulation. The results show thatChe deformation of the structure of the soft-hard backfill wall is coordinated with the roof and floor. The soft structure on the top of the backfill wall can absorb the energy in the roof by its large deformation and adapt to the given deformation caused by the rotation and subsidence of a key rock block. The hard structure at the bottom of the backfill wall can absorb the strong supporting resistance from the top surrounding rock. The soft structure on the top protecting the hard bottom structure by its large deformation contributes to the stability of the entire backfill wall. An application indicated that the stress in the backfill wall effec- tively decreased and its deformation was significantly reduced after the top coal remained. This ensured the stability of the backfill wall.
文摘Molecular dynamics method was employed to study the binding energies of the selected crystal planes of the 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane(HMX)/1,3-dimethyl-2-imidazolidinone(DMI) cocrystal in different molecular molar ratios. The mechanical properties were estimated in different molar ratios. Solvent effects were evaluated and the cooperativity effects were discussed in the HMX···HF···DMI ternary by using the M06-2x/6-311+G(2df,2p) and MP2(full)/6-311+G(2df,2p) methods. The results indicate that the substituted patterns(020) and(100) own the highest binding energies. The stabilities of cocrystals in the 1:1 and 2:1 ratios are the greatest, and thus the HMX/DMI cocrystals prefer cocrystallizing in the 1:1 and 2:1 molar ratios, which have good mechanical properties. The sensitivity change of cocrystal originates from not only the formation of intermolecular interaction but also the increment of bond dissociation energy of the N–NO2 bond. The cooperativity effect appears in the linear complex while the anti-cooperativity effect is found in the cyclic system. DMI binding to HMX is not energetically and structurally favored in the presence of HF. This is perhaps the reason that the solvent with large dielectric constant weakens the stability of the HMX/DMI cocrystals. Therefore, the solvents with low dielectric constants should be chosen in the preparation of HMX/DMI cocrystals.
基金Project supported by the National Natural Science Foundation of China(No.12072240)。
文摘The closed-form solutions of the dynamic problem of heterogeneous piezoelectric materials are formulated by introducing polarizations into a reference medium and using the generalized reciprocity theorem.These solutions can be reduced to the ones of an elastodynamic problem.Based on the effective medium method,these closedform solutions can be used to establish the self-consistent equations about the frequencydependent effective parameters,which can be numerically solved by iteration.Theoretical predictions are compared with the experimental results,and good agreement can be found.Furthermore,the analyses on the effects of microstructure and wavelength on the effective properties,resonance frequencies,and attenuation are also presented,which may provide some guidance for the microstructure design and analysis of piezoelectric composites.