In this paper,Runge-Kutta Discontinuous Galerkin(RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discreti...In this paper,Runge-Kutta Discontinuous Galerkin(RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discretized by the DG method in space and the temporal discretization is accomplished by the total variation diminishing Runge-Kutta method.A limiter based on the characteristic field decomposition is applied to maintain stability and non-oscillatory property of the RKDG method.For multi-medium fluid simulation,the two cells adjacent to the interface are treated differently from other cells.At first,a linear Riemann solver is applied to calculate the numerical ?ux at the interface.Numerical examples show that there is some oscillation in the vicinity of the interface.Then a nonlinear Riemann solver based on the characteristic formulation of the equation and the discontinuity relations is adopted to calculate the numerical ?ux at the interface,which suppresses the oscillation successfully.Several single-medium and multi-medium fluid examples are given to demonstrate the reliability and efficiency of the algorithm.展开更多
The present article is concerned with the implementation of a recent semi-analytical method referred to as fractional reduced differential transform method (FRDTM) for computation of approximate solution of time-fra...The present article is concerned with the implementation of a recent semi-analytical method referred to as fractional reduced differential transform method (FRDTM) for computation of approximate solution of time-fractional gas dynamics equation (TFGDE) arising in shock fronts. In this approach, the fractional derivative is described in the Caputo sense. Four numeric experiments have been carried out to confirm the validity and the efficiency of the method. It is found that the exact or a closed approximate analytical solution of a fractional nonlinear differential equations arising in allied science and engineering can be obtained easily. Moreover, due to its small size of calculation contrary to the other analytical approaches while dealing with a complex and tedious physical problems arising in various branches of natural sciences and engineering, it is very easy to implement.展开更多
In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existe...In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existence of eventually positive solutions having upper bounds and tending to zero.Third,we obtain new oscillation criteria by employing the Potzsche chain rule.Then,using the generalized Riccati transformation technique and averaging method,we establish the Philos-type oscillation criteria.Surprisingly,the integral value of the Philos-type oscillation criteria,which guarantees that all unbounded solutions oscillate,is greater than θ_(4)(t_(1),T).The results of Theorem 3.5 and Remark 3.6 are novel.Finally,we offer four examples to illustrate our results.展开更多
We propose an all regime Lagrange-Projection like numerical scheme for the gas dynamics equations.By all regime,we mean that the numerical scheme is able to compute accurate approximate solutions with an under-resolve...We propose an all regime Lagrange-Projection like numerical scheme for the gas dynamics equations.By all regime,we mean that the numerical scheme is able to compute accurate approximate solutions with an under-resolved discretization with respect to the Mach number M,i.e.such that the ratio between the Mach number M and the mesh size or the time step is small with respect to 1.The key idea is to decouple acoustic and transport phenomenon and then alter the numerical flux in the acoustic approximation to obtain a uniform truncation error in term of M.This modified scheme is conservative and endowed with good stability properties with respect to the positivity of the density and the internal energy.A discrete entropy inequality under a condition on the modification is obtained thanks to a reinterpretation of the modified scheme in the Harten Lax and van Leer formalism.A natural extension to multi-dimensional problems discretized over unstructured mesh is proposed.Then a simple and efficient semi implicit scheme is also proposed.The resulting scheme is stable under a CFL condition driven by the(slow)material waves and not by the(fast)acoustic waves and so verifies the all regime property.Numerical evidences are proposed and show the ability of the scheme to deal with tests where the flow regime may vary from low to high Mach values.展开更多
Consider the Cauchy problems for an n-dimensional nonlinear system of fluid dynamics equations. The main purpose of this paper is to improve the Fourier splitting method to accomplish the decay estimates with sharp ra...Consider the Cauchy problems for an n-dimensional nonlinear system of fluid dynamics equations. The main purpose of this paper is to improve the Fourier splitting method to accomplish the decay estimates with sharp rates of the global weak solutions of the Cauchy problems. We will couple togeth- er the elementary uniform energy estimates of the global weak solutions and a well known Gronwall's inequality to improve the Fourier splitting method. This method was initiated by Maria Schonbek in the 1980's to study the op- timal long time asymptotic behaviours of the global weak solutions of the nonlinear system of fluid dynamics equations. As applications, the decay esti- mates with sharp rates of the global weak solutions of the Cauchy problems for n-dimensional incompressible Navier-Stokes equations, for the n-dimensional magnetohydrodynamics equations and for many other very interesting nonlin- ear evolution equations with dissipations can be established.展开更多
In this paper the method of design of kinematical and dynamical equations of mechanical systems, applied to numerical ealization, is proposed. The corresponding difference equations, which are obtained, give a guarant...In this paper the method of design of kinematical and dynamical equations of mechanical systems, applied to numerical ealization, is proposed. The corresponding difference equations, which are obtained, give a guarantee of computations with a given precision. The equations of programmed constraints and those of constraint perturbations are defined. The stability of the programmed manifold for numerical solutions of the kinematical and dynamical equations is obtained by corresponding construction of the constraint perturbation equations. The dynamical equations of system with programmed constraints are set up in the form of Lagrange’s equations in generalized coordinates. Certain inverse problems of rigid body dynamics are examined.展开更多
We introduce adaptive moving mesh central-upwind schemes for one-and two-dimensional hyperbolic systems of conservation and balance laws.The proposed methods consist of three steps.First,the solution is evolved by sol...We introduce adaptive moving mesh central-upwind schemes for one-and two-dimensional hyperbolic systems of conservation and balance laws.The proposed methods consist of three steps.First,the solution is evolved by solving the studied system by the second-order semi-discrete central-upwind scheme on either the one-dimensional nonuniform grid or the two-dimensional structured quadrilateral mesh.When the evolution step is complete,the grid points are redistributed according to the moving mesh differential equation.Finally,the evolved solution is projected onto the new mesh in a conservative manner.The resulting adaptive moving mesh methods are applied to the one-and two-dimensional Euler equations of gas dynamics and granular hydrodynamics systems.Our numerical results demonstrate that in both cases,the adaptive moving mesh central-upwind schemes outperform their uniform mesh counterparts.展开更多
A tensor method for the derivation of the equations of rigid body dynamics, based on the concepts of continuum mechanics, is presented. The formula of time derivative of the inertia tensor with zero corotational rate ...A tensor method for the derivation of the equations of rigid body dynamics, based on the concepts of continuum mechanics, is presented. The formula of time derivative of the inertia tensor with zero corotational rate is used to prove the equivalences of five methods, namely, Lagrange's equations, Nielsen's equations, Gibbs-Appell's equations, Kane's equations and the generalized momentum type of Kane's equations. Some differential identities on angular velocity and angular acceleration are given.展开更多
The dot product of the bases vectors on the super-surface of the non-linear nonholonomic constraints with one order, expressed by quasi-coorfinates, and Mishirskiiequalions are regarded as the fundamental equations of...The dot product of the bases vectors on the super-surface of the non-linear nonholonomic constraints with one order, expressed by quasi-coorfinates, and Mishirskiiequalions are regarded as the fundamental equations of dynamics with non-linear andnon-holononlic constraints in one order for the system of the variable mass. From thesethe variant ddferential-equations of dynamics expressed by quasi-coordinates arederived. The fundamental equations of dynamics are compatible with the principle ofJourdain. A case is cited.展开更多
In this paper, We show for isentropic equations of gas dynamics with adiabatic exponent gamma=3 that approximations of weak solutions generated by large time step Godunov's scheme or Glimm's scheme give entrop...In this paper, We show for isentropic equations of gas dynamics with adiabatic exponent gamma=3 that approximations of weak solutions generated by large time step Godunov's scheme or Glimm's scheme give entropy solution in the limit if Courant number is less than or equal to 1.展开更多
In this paper, we study the initial-boundary value problem with rigid wall for the equations in combustion dynamics with largy parameter. Introducing variable scalar norms and two seminorms, making use of the vorticit...In this paper, we study the initial-boundary value problem with rigid wall for the equations in combustion dynamics with largy parameter. Introducing variable scalar norms and two seminorms, making use of the vorticity operator, overcome the difficulty from the large parameter. By energy estimation, the existence and unique theorems of local smooth solution is proved.展开更多
Gas turbines play core roles in clean energy supply and the construction of comprehensive energy systems.The control performance of primary frequency modulation of gas turbines has a great impact on the frequency cont...Gas turbines play core roles in clean energy supply and the construction of comprehensive energy systems.The control performance of primary frequency modulation of gas turbines has a great impact on the frequency control of the power grid.However,there are some control difficulties in the primary frequency modulation control of gas turbines,such as the coupling effect of the fuel control loop and speed control loop,slow tracking speed,and so on.To relieve the abovementioned difficulties,a control strategy based on the desired dynamic equation proportional integral(DDE-PI)is proposed in this paper.Based on the parameter stability region,a parameter tuning procedure is summarized.Simulation is carried out to address the ease of use and simplicity of the proposed tuning method.Finally,DDE-PI is applied to the primary frequency modulation system of an MS6001B heavy-duty gas turbine.The simulation results indicate that the gas turbine with the proposed strategy can obtain the best control performance with a strong ability to deal with system uncertainties.The proposed method shows good engineering application potential.展开更多
This paper is concerned with the oscillatory behavior of a class of third-order noonlinear variable delay neutral functional dynamic equations on time scale. By using the generalized Riccati transformation and inequal...This paper is concerned with the oscillatory behavior of a class of third-order noonlinear variable delay neutral functional dynamic equations on time scale. By using the generalized Riccati transformation and inequality technique, we establish some new oscilla- tion criteria for the equations. Our results extend and improve some known results, but also unify the oscillation of third-order nonlinear variable delay functional differential equations and functional difference equations with a nonlinear neutral term. Some examples are given to illustrate the importance of our results.展开更多
First,screw theory,product of exponential formulas and Jacobian matrix are introduced.Then definitions are given about active force wrench,inertial force wrench,partial velocity twist,generalized active force,and gene...First,screw theory,product of exponential formulas and Jacobian matrix are introduced.Then definitions are given about active force wrench,inertial force wrench,partial velocity twist,generalized active force,and generalized inertial force according to screw theory.After that Kane dynamic equations based on screw theory for open-chain manipulators have been derived. Later on how to compute the partial velocity twist by geometrical method is illustrated. Finally the correctness of conclusions is verified by example.展开更多
By analogue with the methods and processes in continuous mechanics, a Lagrangian formulation and a Hamiltonian formulation of discrete mechanics are obtained. The dynamical equations including Euler Lagrange equations...By analogue with the methods and processes in continuous mechanics, a Lagrangian formulation and a Hamiltonian formulation of discrete mechanics are obtained. The dynamical equations including Euler Lagrange equations and Hamilton's canonical equations of the discrete nonconservative holonomic systems are derived on a discrete variational principle. Some illustrative examples are also given.展开更多
This paper concerns the oscillation of solutions of the second order nonlinear dynamic equation with p-Laplacian and damping(r(t)φ(x^△(t))^△+p(t)φα(x^△α(t)+q(t)f(xδ(t))=0on a time scale T w...This paper concerns the oscillation of solutions of the second order nonlinear dynamic equation with p-Laplacian and damping(r(t)φ(x^△(t))^△+p(t)φα(x^△α(t)+q(t)f(xδ(t))=0on a time scale T which is unbounded above. Sign changes are allowed for the coefficient functions r, p and q. Several examples are given to illustrate the main results.展开更多
In this paper,we establish some oscillation criteria for higher order nonlinear delay dynamic equations of the form[rnφ(⋯r2(r1x^(Δ))^(Δ)⋯)^(Δ)]^(Δ)(t)+h(t)f(x(τ(t)))=0 on an arbitrary time scale T with supT=∞,w...In this paper,we establish some oscillation criteria for higher order nonlinear delay dynamic equations of the form[rnφ(⋯r2(r1x^(Δ))^(Δ)⋯)^(Δ)]^(Δ)(t)+h(t)f(x(τ(t)))=0 on an arbitrary time scale T with supT=∞,where n≥2,φ(u)=|u|^(γ)sgn(u)forγ>0,ri(1≤i≤n)are positive rd-continuous functions and h∈C_(rd)(T,(0,∞)).The functionτ∈C_(rd)(T,T)satisfiesτ(t)≤t and lim_(t→∞)τ(t)=∞and f∈C(R,R).By using a generalized Riccati transformation,we give sufficient conditions under which every solution of this equation is either oscillatory or tends to zero.The obtained results are new for the corresponding higher order differential equations and difference equations.In the end,some applications and examples are provided to illustrate the importance of the main results.展开更多
In this paper the macroscopic damping model for dynamical behavior of the structures with random polycrystalline configurations at micro-nano scales is established. First, the global motion equation of a crystal is de...In this paper the macroscopic damping model for dynamical behavior of the structures with random polycrystalline configurations at micro-nano scales is established. First, the global motion equation of a crystal is decomposed into a set of motion equations with independent single degree of freedom (SDOF) along normal discrete modes, and then damping behavior is introduced into each SDOF motion. Through the interpolation of discrete modes, the continuous representation of damping effects for the crystal is obtained. Second, from energy conservation law the expression of the damping coefficient is derived, and the approximate formula of damping coefficient is given. Next, the continuous damping coefficient for polycrystalline cluster is expressed, the continuous dynamical equation with damping term is obtained, and then the concrete damping coefficients for a polycrystalline Cu sample are shown. Finally, by using statistical two-scale homogenization method, the macroscopic homogenized dynamical equation containing damping term for the structures with random polycrystalline configurations at micro-nano scales is set up.展开更多
The dissipative equilibrium dynamics studies the law of fluid motion under constraints in the contact interface of the coupling system. It needs to examine how con- straints act upon the fluid movement, while the flui...The dissipative equilibrium dynamics studies the law of fluid motion under constraints in the contact interface of the coupling system. It needs to examine how con- straints act upon the fluid movement, while the fluid movement reacts to the constraint field. It also needs to examine the coupling fluid field and media within the contact in- terface, and to use the multi-scale analysis to solve the regular and singular perturbation problems in micro-phenomena of laboratories and macro-phenomena of nature. This pa- per describes the field affected by the gravity constraints. Applying the multi-scale anal- ysis to the complex Fourier harmonic analysis, scale changes, and the introduction of new parameters, the complex three-dimensional coupling dynamic equations are transformed into a boundary layer problem in the one-dimensional complex space. Asymptotic analy- sis is carried out for inter and outer solutions to the perturbation characteristic function of the boundary layer equations in multi-field coupling. Examples are given for disturbance analysis in the flow field, showing the turning point from the index oscillation solution to the algebraic solution. With further analysis and calculation on nonlinear eigenfunctions of the contact interface dynamic problems by the eigenvalue relation, an asymptotic per- turbation solution is obtained. Finally, a boundary layer solution to multi-field coupling problems in the contact interface is obtained by asymptotic estimates of eigenvalues for the G-N mode in the large flow limit. Characteristic parameters in the final form of the eigenvalue relation are key factors of the dissipative dynamics in the contact interface.展开更多
-Starting from physical oceanology characteristics of the China seas and for the short-term operational prediction of SST in the region, a two-dimensional (vertically integrated) primitive equation model, physically r...-Starting from physical oceanology characteristics of the China seas and for the short-term operational prediction of SST in the region, a two-dimensional (vertically integrated) primitive equation model, physically reasonable and operationally feasible,on the upper mixed layer is constructed and given here, which consists of three parts, the nondivergent residual current (the monthly mean field of the Kuroshio and its branches) equations, the dynamic forecasting equations, and the equation of model's physics consisting of surface heat flux, coolings of the upper mixed layer due to the Ekman pumping and the entrainment by gale. This model may be used primarily to forecast the sea surface temperature, and to give estimations of the mean wind-driven current and the sea level, for a period of 3-5 d. In part 1 of this series, the physical conditions for establishing model equations are discussed first, that is, 1. the existence of the upper well mixed layer in the region; 2. the distinguishability of currents of all kinds; 3. the splitting of thermodynamical equation. The equations of nondivergent residual current, and the dynamic forecasting equations with initial values and boundary conditions are also discussed.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11261035,11171038,and 10771019)the Science Reaearch Foundation of Institute of Higher Education of Inner Mongolia Autonomous Region,China (Grant No. NJZZ12198)the Natural Science Foundation of Inner Mongolia Autonomous Region,China (Grant No. 2012MS0102)
文摘In this paper,Runge-Kutta Discontinuous Galerkin(RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discretized by the DG method in space and the temporal discretization is accomplished by the total variation diminishing Runge-Kutta method.A limiter based on the characteristic field decomposition is applied to maintain stability and non-oscillatory property of the RKDG method.For multi-medium fluid simulation,the two cells adjacent to the interface are treated differently from other cells.At first,a linear Riemann solver is applied to calculate the numerical ?ux at the interface.Numerical examples show that there is some oscillation in the vicinity of the interface.Then a nonlinear Riemann solver based on the characteristic formulation of the equation and the discontinuity relations is adopted to calculate the numerical ?ux at the interface,which suppresses the oscillation successfully.Several single-medium and multi-medium fluid examples are given to demonstrate the reliability and efficiency of the algorithm.
文摘The present article is concerned with the implementation of a recent semi-analytical method referred to as fractional reduced differential transform method (FRDTM) for computation of approximate solution of time-fractional gas dynamics equation (TFGDE) arising in shock fronts. In this approach, the fractional derivative is described in the Caputo sense. Four numeric experiments have been carried out to confirm the validity and the efficiency of the method. It is found that the exact or a closed approximate analytical solution of a fractional nonlinear differential equations arising in allied science and engineering can be obtained easily. Moreover, due to its small size of calculation contrary to the other analytical approaches while dealing with a complex and tedious physical problems arising in various branches of natural sciences and engineering, it is very easy to implement.
基金supported by the National Natural Science Foundation of China(12071491,12001113)。
文摘In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existence of eventually positive solutions having upper bounds and tending to zero.Third,we obtain new oscillation criteria by employing the Potzsche chain rule.Then,using the generalized Riccati transformation technique and averaging method,we establish the Philos-type oscillation criteria.Surprisingly,the integral value of the Philos-type oscillation criteria,which guarantees that all unbounded solutions oscillate,is greater than θ_(4)(t_(1),T).The results of Theorem 3.5 and Remark 3.6 are novel.Finally,we offer four examples to illustrate our results.
文摘We propose an all regime Lagrange-Projection like numerical scheme for the gas dynamics equations.By all regime,we mean that the numerical scheme is able to compute accurate approximate solutions with an under-resolved discretization with respect to the Mach number M,i.e.such that the ratio between the Mach number M and the mesh size or the time step is small with respect to 1.The key idea is to decouple acoustic and transport phenomenon and then alter the numerical flux in the acoustic approximation to obtain a uniform truncation error in term of M.This modified scheme is conservative and endowed with good stability properties with respect to the positivity of the density and the internal energy.A discrete entropy inequality under a condition on the modification is obtained thanks to a reinterpretation of the modified scheme in the Harten Lax and van Leer formalism.A natural extension to multi-dimensional problems discretized over unstructured mesh is proposed.Then a simple and efficient semi implicit scheme is also proposed.The resulting scheme is stable under a CFL condition driven by the(slow)material waves and not by the(fast)acoustic waves and so verifies the all regime property.Numerical evidences are proposed and show the ability of the scheme to deal with tests where the flow regime may vary from low to high Mach values.
文摘Consider the Cauchy problems for an n-dimensional nonlinear system of fluid dynamics equations. The main purpose of this paper is to improve the Fourier splitting method to accomplish the decay estimates with sharp rates of the global weak solutions of the Cauchy problems. We will couple togeth- er the elementary uniform energy estimates of the global weak solutions and a well known Gronwall's inequality to improve the Fourier splitting method. This method was initiated by Maria Schonbek in the 1980's to study the op- timal long time asymptotic behaviours of the global weak solutions of the nonlinear system of fluid dynamics equations. As applications, the decay esti- mates with sharp rates of the global weak solutions of the Cauchy problems for n-dimensional incompressible Navier-Stokes equations, for the n-dimensional magnetohydrodynamics equations and for many other very interesting nonlin- ear evolution equations with dissipations can be established.
基金Supported by Russian Fund of Fund amental Investigations(Pr.990101064)and Russian Minister of Educatin
文摘In this paper the method of design of kinematical and dynamical equations of mechanical systems, applied to numerical ealization, is proposed. The corresponding difference equations, which are obtained, give a guarantee of computations with a given precision. The equations of programmed constraints and those of constraint perturbations are defined. The stability of the programmed manifold for numerical solutions of the kinematical and dynamical equations is obtained by corresponding construction of the constraint perturbation equations. The dynamical equations of system with programmed constraints are set up in the form of Lagrange’s equations in generalized coordinates. Certain inverse problems of rigid body dynamics are examined.
基金The work of A.Kurganov was supported in part by the National Natural Science Foundation of China grant 11771201by the fund of the Guangdong Provincial Key Laboratory of Computational Science and Material Design(No.2019B030301001).
文摘We introduce adaptive moving mesh central-upwind schemes for one-and two-dimensional hyperbolic systems of conservation and balance laws.The proposed methods consist of three steps.First,the solution is evolved by solving the studied system by the second-order semi-discrete central-upwind scheme on either the one-dimensional nonuniform grid or the two-dimensional structured quadrilateral mesh.When the evolution step is complete,the grid points are redistributed according to the moving mesh differential equation.Finally,the evolved solution is projected onto the new mesh in a conservative manner.The resulting adaptive moving mesh methods are applied to the one-and two-dimensional Euler equations of gas dynamics and granular hydrodynamics systems.Our numerical results demonstrate that in both cases,the adaptive moving mesh central-upwind schemes outperform their uniform mesh counterparts.
文摘A tensor method for the derivation of the equations of rigid body dynamics, based on the concepts of continuum mechanics, is presented. The formula of time derivative of the inertia tensor with zero corotational rate is used to prove the equivalences of five methods, namely, Lagrange's equations, Nielsen's equations, Gibbs-Appell's equations, Kane's equations and the generalized momentum type of Kane's equations. Some differential identities on angular velocity and angular acceleration are given.
文摘The dot product of the bases vectors on the super-surface of the non-linear nonholonomic constraints with one order, expressed by quasi-coorfinates, and Mishirskiiequalions are regarded as the fundamental equations of dynamics with non-linear andnon-holononlic constraints in one order for the system of the variable mass. From thesethe variant ddferential-equations of dynamics expressed by quasi-coordinates arederived. The fundamental equations of dynamics are compatible with the principle ofJourdain. A case is cited.
基金Supported in part by the National Natural Science of China, NSF Grant No. DMS-8657319.
文摘In this paper, We show for isentropic equations of gas dynamics with adiabatic exponent gamma=3 that approximations of weak solutions generated by large time step Godunov's scheme or Glimm's scheme give entropy solution in the limit if Courant number is less than or equal to 1.
文摘In this paper, we study the initial-boundary value problem with rigid wall for the equations in combustion dynamics with largy parameter. Introducing variable scalar norms and two seminorms, making use of the vorticity operator, overcome the difficulty from the large parameter. By energy estimation, the existence and unique theorems of local smooth solution is proved.
基金supported by Science and Technology Project of Jiangsu Frontier Electric Technology Co.,Ltd. (Grant Number KJ202004),Gao A.M. (author who received the grant).
文摘Gas turbines play core roles in clean energy supply and the construction of comprehensive energy systems.The control performance of primary frequency modulation of gas turbines has a great impact on the frequency control of the power grid.However,there are some control difficulties in the primary frequency modulation control of gas turbines,such as the coupling effect of the fuel control loop and speed control loop,slow tracking speed,and so on.To relieve the abovementioned difficulties,a control strategy based on the desired dynamic equation proportional integral(DDE-PI)is proposed in this paper.Based on the parameter stability region,a parameter tuning procedure is summarized.Simulation is carried out to address the ease of use and simplicity of the proposed tuning method.Finally,DDE-PI is applied to the primary frequency modulation system of an MS6001B heavy-duty gas turbine.The simulation results indicate that the gas turbine with the proposed strategy can obtain the best control performance with a strong ability to deal with system uncertainties.The proposed method shows good engineering application potential.
基金Supported by the NNSF of China(11071222)Supported by the NSF of Hunan Province(12JJ6006)Supported by Scientific Research Fund of Education Department of Guangxi Zhuang Autonomous Region(2013YB223)
文摘This paper is concerned with the oscillatory behavior of a class of third-order noonlinear variable delay neutral functional dynamic equations on time scale. By using the generalized Riccati transformation and inequality technique, we establish some new oscilla- tion criteria for the equations. Our results extend and improve some known results, but also unify the oscillation of third-order nonlinear variable delay functional differential equations and functional difference equations with a nonlinear neutral term. Some examples are given to illustrate the importance of our results.
文摘First,screw theory,product of exponential formulas and Jacobian matrix are introduced.Then definitions are given about active force wrench,inertial force wrench,partial velocity twist,generalized active force,and generalized inertial force according to screw theory.After that Kane dynamic equations based on screw theory for open-chain manipulators have been derived. Later on how to compute the partial velocity twist by geometrical method is illustrated. Finally the correctness of conclusions is verified by example.
基金Project supported by the National Natural Science Foundation of China (Grant No 19572018).
文摘By analogue with the methods and processes in continuous mechanics, a Lagrangian formulation and a Hamiltonian formulation of discrete mechanics are obtained. The dynamical equations including Euler Lagrange equations and Hamilton's canonical equations of the discrete nonconservative holonomic systems are derived on a discrete variational principle. Some illustrative examples are also given.
基金supported in part by the NNSF of China(10971231 and 11271379)
文摘This paper concerns the oscillation of solutions of the second order nonlinear dynamic equation with p-Laplacian and damping(r(t)φ(x^△(t))^△+p(t)φα(x^△α(t)+q(t)f(xδ(t))=0on a time scale T which is unbounded above. Sign changes are allowed for the coefficient functions r, p and q. Several examples are given to illustrate the main results.
基金supported by the Jiangxi Provincial Natural Science Foundation(20202BABL211003)the Science and Technology Project of Jiangxi Education Department(GJJ180354).
文摘In this paper,we establish some oscillation criteria for higher order nonlinear delay dynamic equations of the form[rnφ(⋯r2(r1x^(Δ))^(Δ)⋯)^(Δ)]^(Δ)(t)+h(t)f(x(τ(t)))=0 on an arbitrary time scale T with supT=∞,where n≥2,φ(u)=|u|^(γ)sgn(u)forγ>0,ri(1≤i≤n)are positive rd-continuous functions and h∈C_(rd)(T,(0,∞)).The functionτ∈C_(rd)(T,T)satisfiesτ(t)≤t and lim_(t→∞)τ(t)=∞and f∈C(R,R).By using a generalized Riccati transformation,we give sufficient conditions under which every solution of this equation is either oscillatory or tends to zero.The obtained results are new for the corresponding higher order differential equations and difference equations.In the end,some applications and examples are provided to illustrate the importance of the main results.
基金partially supported by the National Basic Research Program of China (973 Program Grant 2012CB025904)the National Natural Science Foundation of China (Grant 11102221)the State Key Laboratory of Science and Engineering Computing (LSEC)
文摘In this paper the macroscopic damping model for dynamical behavior of the structures with random polycrystalline configurations at micro-nano scales is established. First, the global motion equation of a crystal is decomposed into a set of motion equations with independent single degree of freedom (SDOF) along normal discrete modes, and then damping behavior is introduced into each SDOF motion. Through the interpolation of discrete modes, the continuous representation of damping effects for the crystal is obtained. Second, from energy conservation law the expression of the damping coefficient is derived, and the approximate formula of damping coefficient is given. Next, the continuous damping coefficient for polycrystalline cluster is expressed, the continuous dynamical equation with damping term is obtained, and then the concrete damping coefficients for a polycrystalline Cu sample are shown. Finally, by using statistical two-scale homogenization method, the macroscopic homogenized dynamical equation containing damping term for the structures with random polycrystalline configurations at micro-nano scales is set up.
基金Project supported by the National Natural Science Foundation of China (No. 10871225)the Pujiang Talent Program of China (No. 06PJ14416)
文摘The dissipative equilibrium dynamics studies the law of fluid motion under constraints in the contact interface of the coupling system. It needs to examine how con- straints act upon the fluid movement, while the fluid movement reacts to the constraint field. It also needs to examine the coupling fluid field and media within the contact in- terface, and to use the multi-scale analysis to solve the regular and singular perturbation problems in micro-phenomena of laboratories and macro-phenomena of nature. This pa- per describes the field affected by the gravity constraints. Applying the multi-scale anal- ysis to the complex Fourier harmonic analysis, scale changes, and the introduction of new parameters, the complex three-dimensional coupling dynamic equations are transformed into a boundary layer problem in the one-dimensional complex space. Asymptotic analy- sis is carried out for inter and outer solutions to the perturbation characteristic function of the boundary layer equations in multi-field coupling. Examples are given for disturbance analysis in the flow field, showing the turning point from the index oscillation solution to the algebraic solution. With further analysis and calculation on nonlinear eigenfunctions of the contact interface dynamic problems by the eigenvalue relation, an asymptotic per- turbation solution is obtained. Finally, a boundary layer solution to multi-field coupling problems in the contact interface is obtained by asymptotic estimates of eigenvalues for the G-N mode in the large flow limit. Characteristic parameters in the final form of the eigenvalue relation are key factors of the dissipative dynamics in the contact interface.
文摘-Starting from physical oceanology characteristics of the China seas and for the short-term operational prediction of SST in the region, a two-dimensional (vertically integrated) primitive equation model, physically reasonable and operationally feasible,on the upper mixed layer is constructed and given here, which consists of three parts, the nondivergent residual current (the monthly mean field of the Kuroshio and its branches) equations, the dynamic forecasting equations, and the equation of model's physics consisting of surface heat flux, coolings of the upper mixed layer due to the Ekman pumping and the entrainment by gale. This model may be used primarily to forecast the sea surface temperature, and to give estimations of the mean wind-driven current and the sea level, for a period of 3-5 d. In part 1 of this series, the physical conditions for establishing model equations are discussed first, that is, 1. the existence of the upper well mixed layer in the region; 2. the distinguishability of currents of all kinds; 3. the splitting of thermodynamical equation. The equations of nondivergent residual current, and the dynamic forecasting equations with initial values and boundary conditions are also discussed.