The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimiz...The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimization relationship. The use of six fuzzy logic controllers(6FLCs) is proposed for dynamic control genetic operating parameters of a symbolic-coded GA. This paper uses AGA based on 6FLCs to deal with the travelling salesman problem (TSP). Experimental results show that AGA based on 6FLCs is more efficient than a standard GA in solving combinatorial optimization problems similar to TSP.展开更多
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ...This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.展开更多
In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonli...In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonlinear functions, a fuzzy state observer is designed for estimating the unmeasured states. On the basis of the state observer and applying the backstepping technique, an adaptive fuzzy observer control approach is developed. The main features of the proposed adaptive fuzzy control approach not only guarantees that all the signals of the closed-loop system are semiglobally uniformly ultimately bounded, but also contain less adaptation parameters to be updated on-line. Finally, simulation results are provided to show the effectiveness of the proposed approach.展开更多
The core task of tracking control is to make the controlled plant track a desired trajectory.The traditional performance index used in previous studies cannot eliminate completely the tracking error as the number of t...The core task of tracking control is to make the controlled plant track a desired trajectory.The traditional performance index used in previous studies cannot eliminate completely the tracking error as the number of time steps increases.In this paper,a new cost function is introduced to develop the value-iteration-based adaptive critic framework to solve the tracking control problem.Unlike the regulator problem,the iterative value function of tracking control problem cannot be regarded as a Lyapunov function.A novel stability analysis method is developed to guarantee that the tracking error converges to zero.The discounted iterative scheme under the new cost function for the special case of linear systems is elaborated.Finally,the tracking performance of the present scheme is demonstrated by numerical results and compared with those of the traditional approaches.展开更多
In this paper, we propose an adaptive fuzzy dynamic surface control(DSC) scheme for single-link flexible-joint robotic systems with input saturation. A smooth function is utilized with the mean-value theorem to deal w...In this paper, we propose an adaptive fuzzy dynamic surface control(DSC) scheme for single-link flexible-joint robotic systems with input saturation. A smooth function is utilized with the mean-value theorem to deal with the difficulties associated with input saturation. An adaptive DSC design with an auxiliary first-order filter is used to solve the "explosion of complexity"problem. It is proved that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded, and the tracking error eventually converges to a small neighborhood around zero. The main advantage of the proposed method is that only one adaptation parameter needs to be updated,which reduces the computational burden significantly. Simulation results demonstrate the feasibility of the proposed scheme and the comparison results show that the improved DSC method can reduce the computational burden by almost two thirds in comparison with the standard DSC method.展开更多
In this paper, an approach to the control of continuous-time chaotic systems is proposed using the Takagi-Sugeno (TS) fuzzy model and adaptive adjustment. Sufficient conditions are derived to guarantee chaos control...In this paper, an approach to the control of continuous-time chaotic systems is proposed using the Takagi-Sugeno (TS) fuzzy model and adaptive adjustment. Sufficient conditions are derived to guarantee chaos control from Lyapunov stability theory. The proposed approach offers a systematic design procedure for stabilizing a large class of chaotic systems in the literature about chaos research. The simulation results on Rossler's system verify the effectiveness of the proposed methods.展开更多
Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic character...Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic characteristics,and multiple constraints,such as impact angle,limited measurement of line of sight(LOS)angle rate and nonlinear saturation of canard deflection.Initially,a strict feedback cascade model of IGC in longitudinal plane was established,and extended state observer(ESO)was designed to estimate LOS angle rate and uncertain disturbances with unknown boundary inside and outside of system,including aerodynamic parameters perturbation,target maneuver and model errors.Secondly,aiming at zeroing LOS angle tracking error and LOS angle rate in finite time,a nonsingular terminal sliding mode(NTSM)was designed with adaptive exponential reaching law.Furthermore,combining with dynamic surface,which prevented the complex differential of virtual control laws,the fuzzy adaptive systems were designed to approximate observation errors of uncertain disturbances and to reduce chatter of control law.Finally,the adaptive Nussbaum gain function was introduced to compensate nonlinear saturation of canard deflection.The LOS angle tracking error and LOS angle rate were convergent in finite time and whole system states were uniform ultimately bounded,rigorously proven by Lyapunov stability theory.Hardware-in-the-loop simulation(HILS)and digital simulation experiments both showed FADS provided guided projectile with good guidance performance while striking targets with different maneuvering forms.展开更多
A directly adaptive fuzzy algorithm is applied in vehicle adaptive cruise control system. The basic principle of the adaptive fuzzy algorithm is analyzed. The initial value of the fuzzy based vector is given by the tr...A directly adaptive fuzzy algorithm is applied in vehicle adaptive cruise control system. The basic principle of the adaptive fuzzy algorithm is analyzed. The initial value of the fuzzy based vector is given by the traditional fuzzy membership. Adaptive law of the adjustable parameters 6 is also determined. The directly adaptive fuzzy ACC controller is designed based on Matlab fuzzy toolbox. Matlab-Simulink is adopted to test the function of the adaptive fuzzy ACC controller. The control system is established using a 7 DOF vehicle dynamics model. Simulation results indicate that the principle of the method is correct and it performs well both in cruise and distance keeping.展开更多
An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membe...An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membership functions in fuzzy logic systems are adjusted according to adaptive laws for the purpose of controlling the plant to track a reference trajectory. It is proved that the scheme can not only guarantee the boundedness of the input and output of the closed-loop system, but also make the tracking error converge to a small neighborhood of the origin. Simulation results indicate the effectiveness of this scheme.展开更多
In this work,an adaptive sampling control strategy for distributed predictive control is proposed.According to the proposed method,the sampling rate of each subsystem of the accused object is determined based on the p...In this work,an adaptive sampling control strategy for distributed predictive control is proposed.According to the proposed method,the sampling rate of each subsystem of the accused object is determined based on the periodic detection of its dynamic behavior and calculations made using a correlation function.Then,the optimal sampling interval within the period is obtained and sent to the corresponding sub-prediction controller,and the sampling interval of the controller is changed accordingly before the next sampling period begins.In the next control period,the adaptive sampling mechanism recalculates the sampling rate of each subsystem’s measurable output variable according to both the abovementioned method and the change in the dynamic behavior of the entire system,and this process is repeated.Such an adaptive sampling interval selection based on an autocorrelation function that measures dynamic behavior can dynamically optimize the selection of sampling rate according to the real-time change in the dynamic behavior of the controlled object.It can also accurately capture dynamic changes,meaning that each sub-prediction controller can more accurately calculate the optimal control quantity at the next moment,significantly improving the performance of distributed model predictive control(DMPC).A comparison demonstrates that the proposed adaptive sampling DMPC algorithm has better tracking performance than the traditional DMPC algorithm.展开更多
In this paper, a fuzzy adaptive tracking control for uncertain strict-feedback nonlinear systems with unknown bounded disturbances is proposed. The generalized fuzzy hyperbolic model (GFHM) with better approximation p...In this paper, a fuzzy adaptive tracking control for uncertain strict-feedback nonlinear systems with unknown bounded disturbances is proposed. The generalized fuzzy hyperbolic model (GFHM) with better approximation performance is used to approximate the unknown nonlinear function in the system. The dynamic surface control (DSC) is used to design the controller, which not only avoids the “explosion of complexity” problem in the process of repeated derivation, but also makes the control system simpler in structure and lower in computational cost because only one adaptive law is designed in the controller design process. Through the Lyapunov stability analysis, all signals in the closed loop system designed in this paper are semi-globally uniformly ultimately bounded (SGUUB). Finally, the effectiveness of the method is verified by a simulation example.展开更多
In this paper, we conduct research on the unmanned aerial vehicle adaptive control system based on fuzzy control and chaosmechanics. Four rotor aircraft is a kind of nonlinear systems with underactuated, strong coupli...In this paper, we conduct research on the unmanned aerial vehicle adaptive control system based on fuzzy control and chaosmechanics. Four rotor aircraft is a kind of nonlinear systems with underactuated, strong coupling characteristic. Although in existing research,through the design of the control algorithm effectively inhibits both for fl ight control effect, but not fundamentally eliminate the effect of aircraft.Dynamic model of unmanned helicopter fl ight control system design is very approximate, need to gradually improve the modeling accuracy, soas to get the exact autonomous fl ight control, so you need to practice constantly required to modeling in the fl ight information, so the unmannedhelicopter fl ight control system to have the ability to retrieve information modeling. This paper proposes the new idea on the issues that will bemeaningful.展开更多
This paper proposes an adaptive neural network control method for a class of perturbed strict-feedback nonlinear systems with unknown time delays. Radial basis function neural networks are used to approximate unknown ...This paper proposes an adaptive neural network control method for a class of perturbed strict-feedback nonlinear systems with unknown time delays. Radial basis function neural networks are used to approximate unknown intermediate control signals. By constructing appropriate Lyapunov-Krasovskii functionals, the unknown time delay terms have been compensated. Dynamic surface control technique is used to overcome the problem of "explosion of complexity" in backstepping design procedure. In addition, the semiglobal uniform ultimate boundedness of all the signals in the closed-loop system is proved. A main advantage of the proposed controller is that both problems of "curse of dimensionality" and "explosion of complexity" are avoided simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the approach.展开更多
Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employe...Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employed to identify the primary uncertainty and the mathematic model of the system was turned into an equivalent linear model with terms of secondary uncertainty.At the same time,gain adaptive sliding mode variable structure control(GASMVSC) was employed to synthesize the control effort.The results show that the unrealization problem caused by some system's immeasurable state variables in traditional fuzzy neural networks(TFNN) taking all state variables as its inputs is overcome.On the other hand,the identification by the ADRFNNs online with high accuracy and the adaptive function of the correction term's gain in the GASMVSC make the system possess strong robustness and improved steady accuracy,and the chattering phenomenon of the control effort is also suppressed effectively.展开更多
In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neu...In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neural network with both identification and control role, and the latter is a fuzzy neural algorithm, which is introduced to provide additional control enhancement. The feedforward controller provides only coarse control, whereas the feedback controller can generate on-line conditional proposition rule automatically to improve the overall control action. These properties make the design very versatile and applicable to a range of industrial applications.展开更多
Multiple genetic algorithms (GAs) need a large population size, which will take a long time for evolution. A new fuzzy adaptive GA is proposed in this paper. This algorithm is more effective in global search while kee...Multiple genetic algorithms (GAs) need a large population size, which will take a long time for evolution. A new fuzzy adaptive GA is proposed in this paper. This algorithm is more effective in global search while keeping the overall population size constant. The simulation results of function optimization show that with the proposed algorithm, the phenomenon of premature convergence can be overcome effectively, and a satisfying optimization result is obtained.展开更多
To achieve high work performance for compliant mechanisms of motion scope,continuous work condition,and high frequency,we propose a new hybrid algorithm that could be applied to multi-objective optimum design.In this ...To achieve high work performance for compliant mechanisms of motion scope,continuous work condition,and high frequency,we propose a new hybrid algorithm that could be applied to multi-objective optimum design.In this investigation,we use the tools of finite element analysis(FEA)for a magnificationmechanism to find out the effects of design variables on the magnification ratio of the mechanism and then select an optimal mechanism that could meet design requirements.A poly-algorithm including the Grey-Taguchi method,fuzzy logic system,and adaptive neuro-fuzzy inference system(ANFIS)algorithm,was utilized mainly in this study.The FEA outcomes indicated that design variables have significantly affected on magnification ratio of the mechanism and verified by analysis of variance and analysis of the signal to noise of grey relational grade.The results are also predicted by employing the tool of ANFIS in MATLAB.In conclusion,the optimal findings obtained:Its magnification is larger than 40 times in comparison with the initial design,the maximum principal stress is 127.89MPa,and the first modal shape frequency obtained 397.45 Hz.Moreover,we found that the outcomes obtained deviation error compared with predicted results of displacement,stress,and frequency are 8.76%,3.6%,and 6.92%,respectively.展开更多
针对现有实际通用组播(pragmatic general multicast protocol,PGM)拥塞控制方案难以适应网络的动态变化等不足,提出了一种基于模糊比例积分微分(fuzzy proportional plus integral plus derivative,Fuzzy-PID)控制的组播拥塞控制机制(f...针对现有实际通用组播(pragmatic general multicast protocol,PGM)拥塞控制方案难以适应网络的动态变化等不足,提出了一种基于模糊比例积分微分(fuzzy proportional plus integral plus derivative,Fuzzy-PID)控制的组播拥塞控制机制(fuzzy-PID-controlled multicast congestion control mechanism,FPIDMCC)。FPIDMCC在源端和接收端代表间运用Fuzzy-PID控制方案,使源端能快速响应网络拥塞,实时调整发送速率并使之趋于稳定,增强了对动态网络的适应性;此外,采用基于代表和中间节点反馈聚集相结合的方式进行反馈控制,可有效避免反馈爆炸。其中Fuzzy-PID控制方案结合了传统PID和模糊推理的优点,由模糊推理得到PID控制参数,减少了对系统模型的依赖性。仿真结果表明,FPIDMCC机制拥塞响应速度快、系统稳定性好、动态适应能力强。展开更多
A fully coupled 6-degree-of-freedom nonlinear dynamic model is presented to analyze the dynamic response of a semi-submersible platform which is equipped with the dynamic positioning(DP) system. In the control force d...A fully coupled 6-degree-of-freedom nonlinear dynamic model is presented to analyze the dynamic response of a semi-submersible platform which is equipped with the dynamic positioning(DP) system. In the control force design, a dynamic model of reference linear drift frequency in the horizontal plane is introduced. The dynamic surface control(DSC) is used to design a control strategy for the DP. Compared with the traditional back-stepping methods, the dynamic surface control combined with radial basis function(RBF) neural networks(NNs) can avoid differentiating intermediate variables repeatedly in every design step due to the introduction of a first order filter. Low frequency motions obtained from total motions by a low pass filter are chosen to be the inputs for the RBF NNs which are used to approximate the low frequency wave force. Considering the propellers' wear and tear, the effect of filtering frequencies for the control force is discussed. Based on power consumptions and positioning requirements, the NN centers are determined. Moreover, the RBF NNs used to approximate the total wave force are built to monitor the disturbances. With the DP assistance, the results of fully coupled dynamic response simulations are given to illustrate the effectiveness of the proposed control strategy.展开更多
In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the st...In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the strong ground motion is considered as three dimensional stationary white noise process and the pile-soil interaction and water-structure interaction are considered. The stochastic response of a typical platform to earthquake load has been computed with this method and the results compared with those obtained with the response spectrum analysis method. The comparison shows that the stochastic analysis method of the response of piled platforms to earthquake load is suitable for this kind of analysis.展开更多
文摘The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimization relationship. The use of six fuzzy logic controllers(6FLCs) is proposed for dynamic control genetic operating parameters of a symbolic-coded GA. This paper uses AGA based on 6FLCs to deal with the travelling salesman problem (TSP). Experimental results show that AGA based on 6FLCs is more efficient than a standard GA in solving combinatorial optimization problems similar to TSP.
基金supported by the National Natural Science Foundation of China (62073303,61673356)Hubei Provincial Natural Science Foundation of China (2015CFA010)the 111 Project(B17040)。
文摘This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.
基金supported by National Natural Science Foundation of China (No.60674056)Outstanding Youth Funds of Liaoning Province (No.2005219001)Educational Department of Liaoning Province (No.2006R29,No.2007T80)
文摘In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonlinear functions, a fuzzy state observer is designed for estimating the unmeasured states. On the basis of the state observer and applying the backstepping technique, an adaptive fuzzy observer control approach is developed. The main features of the proposed adaptive fuzzy control approach not only guarantees that all the signals of the closed-loop system are semiglobally uniformly ultimately bounded, but also contain less adaptation parameters to be updated on-line. Finally, simulation results are provided to show the effectiveness of the proposed approach.
基金This work was supported in part by Beijing Natural Science Foundation(JQ19013)the National Key Research and Development Program of China(2021ZD0112302)the National Natural Science Foundation of China(61773373).
文摘The core task of tracking control is to make the controlled plant track a desired trajectory.The traditional performance index used in previous studies cannot eliminate completely the tracking error as the number of time steps increases.In this paper,a new cost function is introduced to develop the value-iteration-based adaptive critic framework to solve the tracking control problem.Unlike the regulator problem,the iterative value function of tracking control problem cannot be regarded as a Lyapunov function.A novel stability analysis method is developed to guarantee that the tracking error converges to zero.The discounted iterative scheme under the new cost function for the special case of linear systems is elaborated.Finally,the tracking performance of the present scheme is demonstrated by numerical results and compared with those of the traditional approaches.
基金supported in part by the National Natural Science Foundation of China (61773051,61773072,61761166011)the Fundamental Research Fund for the Central Universities (2016RC021,2017JBZ003)
文摘In this paper, we propose an adaptive fuzzy dynamic surface control(DSC) scheme for single-link flexible-joint robotic systems with input saturation. A smooth function is utilized with the mean-value theorem to deal with the difficulties associated with input saturation. An adaptive DSC design with an auxiliary first-order filter is used to solve the "explosion of complexity"problem. It is proved that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded, and the tracking error eventually converges to a small neighborhood around zero. The main advantage of the proposed method is that only one adaptation parameter needs to be updated,which reduces the computational burden significantly. Simulation results demonstrate the feasibility of the proposed scheme and the comparison results show that the improved DSC method can reduce the computational burden by almost two thirds in comparison with the standard DSC method.
基金Project supported by the Natural Science Foundation of Yangzhou University of China (Grant No KK0513109).
文摘In this paper, an approach to the control of continuous-time chaotic systems is proposed using the Takagi-Sugeno (TS) fuzzy model and adaptive adjustment. Sufficient conditions are derived to guarantee chaos control from Lyapunov stability theory. The proposed approach offers a systematic design procedure for stabilizing a large class of chaotic systems in the literature about chaos research. The simulation results on Rossler's system verify the effectiveness of the proposed methods.
基金supported by Naval Weapons and Equipment Pre-Research Project(Grant No.3020801010105).
文摘Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic characteristics,and multiple constraints,such as impact angle,limited measurement of line of sight(LOS)angle rate and nonlinear saturation of canard deflection.Initially,a strict feedback cascade model of IGC in longitudinal plane was established,and extended state observer(ESO)was designed to estimate LOS angle rate and uncertain disturbances with unknown boundary inside and outside of system,including aerodynamic parameters perturbation,target maneuver and model errors.Secondly,aiming at zeroing LOS angle tracking error and LOS angle rate in finite time,a nonsingular terminal sliding mode(NTSM)was designed with adaptive exponential reaching law.Furthermore,combining with dynamic surface,which prevented the complex differential of virtual control laws,the fuzzy adaptive systems were designed to approximate observation errors of uncertain disturbances and to reduce chatter of control law.Finally,the adaptive Nussbaum gain function was introduced to compensate nonlinear saturation of canard deflection.The LOS angle tracking error and LOS angle rate were convergent in finite time and whole system states were uniform ultimately bounded,rigorously proven by Lyapunov stability theory.Hardware-in-the-loop simulation(HILS)and digital simulation experiments both showed FADS provided guided projectile with good guidance performance while striking targets with different maneuvering forms.
基金Sponsored by the National Natural Science Foundation of China (501222155)
文摘A directly adaptive fuzzy algorithm is applied in vehicle adaptive cruise control system. The basic principle of the adaptive fuzzy algorithm is analyzed. The initial value of the fuzzy based vector is given by the traditional fuzzy membership. Adaptive law of the adjustable parameters 6 is also determined. The directly adaptive fuzzy ACC controller is designed based on Matlab fuzzy toolbox. Matlab-Simulink is adopted to test the function of the adaptive fuzzy ACC controller. The control system is established using a 7 DOF vehicle dynamics model. Simulation results indicate that the principle of the method is correct and it performs well both in cruise and distance keeping.
基金surported by Tianjin Science and Technology Development for Higher Education(20051206).
文摘An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membership functions in fuzzy logic systems are adjusted according to adaptive laws for the purpose of controlling the plant to track a reference trajectory. It is proved that the scheme can not only guarantee the boundedness of the input and output of the closed-loop system, but also make the tracking error converge to a small neighborhood of the origin. Simulation results indicate the effectiveness of this scheme.
基金the National Natural Science Foundation of China(61563032,61963025)The Open Foundation of the Key Laboratory of Gansu Advanced Control for Industrial Processes(2019KX01)The Project of Industrial support and guidance of Colleges and Universities in Gansu Province(2019C05).
文摘In this work,an adaptive sampling control strategy for distributed predictive control is proposed.According to the proposed method,the sampling rate of each subsystem of the accused object is determined based on the periodic detection of its dynamic behavior and calculations made using a correlation function.Then,the optimal sampling interval within the period is obtained and sent to the corresponding sub-prediction controller,and the sampling interval of the controller is changed accordingly before the next sampling period begins.In the next control period,the adaptive sampling mechanism recalculates the sampling rate of each subsystem’s measurable output variable according to both the abovementioned method and the change in the dynamic behavior of the entire system,and this process is repeated.Such an adaptive sampling interval selection based on an autocorrelation function that measures dynamic behavior can dynamically optimize the selection of sampling rate according to the real-time change in the dynamic behavior of the controlled object.It can also accurately capture dynamic changes,meaning that each sub-prediction controller can more accurately calculate the optimal control quantity at the next moment,significantly improving the performance of distributed model predictive control(DMPC).A comparison demonstrates that the proposed adaptive sampling DMPC algorithm has better tracking performance than the traditional DMPC algorithm.
文摘In this paper, a fuzzy adaptive tracking control for uncertain strict-feedback nonlinear systems with unknown bounded disturbances is proposed. The generalized fuzzy hyperbolic model (GFHM) with better approximation performance is used to approximate the unknown nonlinear function in the system. The dynamic surface control (DSC) is used to design the controller, which not only avoids the “explosion of complexity” problem in the process of repeated derivation, but also makes the control system simpler in structure and lower in computational cost because only one adaptive law is designed in the controller design process. Through the Lyapunov stability analysis, all signals in the closed loop system designed in this paper are semi-globally uniformly ultimately bounded (SGUUB). Finally, the effectiveness of the method is verified by a simulation example.
文摘In this paper, we conduct research on the unmanned aerial vehicle adaptive control system based on fuzzy control and chaosmechanics. Four rotor aircraft is a kind of nonlinear systems with underactuated, strong coupling characteristic. Although in existing research,through the design of the control algorithm effectively inhibits both for fl ight control effect, but not fundamentally eliminate the effect of aircraft.Dynamic model of unmanned helicopter fl ight control system design is very approximate, need to gradually improve the modeling accuracy, soas to get the exact autonomous fl ight control, so you need to practice constantly required to modeling in the fl ight information, so the unmannedhelicopter fl ight control system to have the ability to retrieve information modeling. This paper proposes the new idea on the issues that will bemeaningful.
文摘This paper proposes an adaptive neural network control method for a class of perturbed strict-feedback nonlinear systems with unknown time delays. Radial basis function neural networks are used to approximate unknown intermediate control signals. By constructing appropriate Lyapunov-Krasovskii functionals, the unknown time delay terms have been compensated. Dynamic surface control technique is used to overcome the problem of "explosion of complexity" in backstepping design procedure. In addition, the semiglobal uniform ultimate boundedness of all the signals in the closed-loop system is proved. A main advantage of the proposed controller is that both problems of "curse of dimensionality" and "explosion of complexity" are avoided simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the approach.
基金Project(60634020) supported by the National Natural Science Foundation of China
文摘Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employed to identify the primary uncertainty and the mathematic model of the system was turned into an equivalent linear model with terms of secondary uncertainty.At the same time,gain adaptive sliding mode variable structure control(GASMVSC) was employed to synthesize the control effort.The results show that the unrealization problem caused by some system's immeasurable state variables in traditional fuzzy neural networks(TFNN) taking all state variables as its inputs is overcome.On the other hand,the identification by the ADRFNNs online with high accuracy and the adaptive function of the correction term's gain in the GASMVSC make the system possess strong robustness and improved steady accuracy,and the chattering phenomenon of the control effort is also suppressed effectively.
基金China Postdoctoral Science Foundation and Natural Science of Heibei Province!698004
文摘In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neural network with both identification and control role, and the latter is a fuzzy neural algorithm, which is introduced to provide additional control enhancement. The feedforward controller provides only coarse control, whereas the feedback controller can generate on-line conditional proposition rule automatically to improve the overall control action. These properties make the design very versatile and applicable to a range of industrial applications.
基金Supported by Basic Research Foundation of National Defence (No. B0203-031)
文摘Multiple genetic algorithms (GAs) need a large population size, which will take a long time for evolution. A new fuzzy adaptive GA is proposed in this paper. This algorithm is more effective in global search while keeping the overall population size constant. The simulation results of function optimization show that with the proposed algorithm, the phenomenon of premature convergence can be overcome effectively, and a satisfying optimization result is obtained.
基金This work is funded by Hung Yen University of Technology and Education and Industrial University of Ho Chi Minh City.
文摘To achieve high work performance for compliant mechanisms of motion scope,continuous work condition,and high frequency,we propose a new hybrid algorithm that could be applied to multi-objective optimum design.In this investigation,we use the tools of finite element analysis(FEA)for a magnificationmechanism to find out the effects of design variables on the magnification ratio of the mechanism and then select an optimal mechanism that could meet design requirements.A poly-algorithm including the Grey-Taguchi method,fuzzy logic system,and adaptive neuro-fuzzy inference system(ANFIS)algorithm,was utilized mainly in this study.The FEA outcomes indicated that design variables have significantly affected on magnification ratio of the mechanism and verified by analysis of variance and analysis of the signal to noise of grey relational grade.The results are also predicted by employing the tool of ANFIS in MATLAB.In conclusion,the optimal findings obtained:Its magnification is larger than 40 times in comparison with the initial design,the maximum principal stress is 127.89MPa,and the first modal shape frequency obtained 397.45 Hz.Moreover,we found that the outcomes obtained deviation error compared with predicted results of displacement,stress,and frequency are 8.76%,3.6%,and 6.92%,respectively.
文摘针对现有实际通用组播(pragmatic general multicast protocol,PGM)拥塞控制方案难以适应网络的动态变化等不足,提出了一种基于模糊比例积分微分(fuzzy proportional plus integral plus derivative,Fuzzy-PID)控制的组播拥塞控制机制(fuzzy-PID-controlled multicast congestion control mechanism,FPIDMCC)。FPIDMCC在源端和接收端代表间运用Fuzzy-PID控制方案,使源端能快速响应网络拥塞,实时调整发送速率并使之趋于稳定,增强了对动态网络的适应性;此外,采用基于代表和中间节点反馈聚集相结合的方式进行反馈控制,可有效避免反馈爆炸。其中Fuzzy-PID控制方案结合了传统PID和模糊推理的优点,由模糊推理得到PID控制参数,减少了对系统模型的依赖性。仿真结果表明,FPIDMCC机制拥塞响应速度快、系统稳定性好、动态适应能力强。
基金funded by the National Basic Research Program of China (Grant Nos. 2011CB013702 and 2011CB013703)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 50921001)
文摘A fully coupled 6-degree-of-freedom nonlinear dynamic model is presented to analyze the dynamic response of a semi-submersible platform which is equipped with the dynamic positioning(DP) system. In the control force design, a dynamic model of reference linear drift frequency in the horizontal plane is introduced. The dynamic surface control(DSC) is used to design a control strategy for the DP. Compared with the traditional back-stepping methods, the dynamic surface control combined with radial basis function(RBF) neural networks(NNs) can avoid differentiating intermediate variables repeatedly in every design step due to the introduction of a first order filter. Low frequency motions obtained from total motions by a low pass filter are chosen to be the inputs for the RBF NNs which are used to approximate the low frequency wave force. Considering the propellers' wear and tear, the effect of filtering frequencies for the control force is discussed. Based on power consumptions and positioning requirements, the NN centers are determined. Moreover, the RBF NNs used to approximate the total wave force are built to monitor the disturbances. With the DP assistance, the results of fully coupled dynamic response simulations are given to illustrate the effectiveness of the proposed control strategy.
文摘In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the strong ground motion is considered as three dimensional stationary white noise process and the pile-soil interaction and water-structure interaction are considered. The stochastic response of a typical platform to earthquake load has been computed with this method and the results compared with those obtained with the response spectrum analysis method. The comparison shows that the stochastic analysis method of the response of piled platforms to earthquake load is suitable for this kind of analysis.