期刊文献+
共找到616篇文章
< 1 2 31 >
每页显示 20 50 100
Articulated Lifting System Modeling Based on Dynamics of Flexible Multi-Body Systems
1
作者 徐妍 冯雅丽 张文明 《China Ocean Engineering》 SCIE EI 2007年第4期715-722,共8页
In lifting sub-system of deep-sea mining system, spherical joint is used to connect lifting pipes to replace fixed joint. Based on Dynamics of Flexible Multi-body systems, the mechanics model of articulated lifting sy... In lifting sub-system of deep-sea mining system, spherical joint is used to connect lifting pipes to replace fixed joint. Based on Dynamics of Flexible Multi-body systems, the mechanics model of articulated lifting system is established. Under the four-grade and six-grade oceanic condition, dynamic responses of lifting system are simulated and experiment verified. The simulation results are consistent with experimental ones. The maximum moment of flexion is 322 kN-m on the first pipe under six-grade sea condition. It is seen that the articulated connection can reduce the moment of flexion. The bending deformation of pipe center is researched, and the maximum is 0. 000479 m on the first pipe. Deformation has a little effect on the motion of system. It is feasible to analyze articulated lifting system by applying the theory of flexible multi-body dynamics. The articulated lifting system is obviously better than the fixed one. 展开更多
关键词 articulated lifting system flexible multi-body dynamics bending deformation dynamics modeling
下载PDF
Implementation of configuration dependent stiffness proportional damping for the dynamics of rigid multi-block systems 被引量:4
2
作者 Yun Byeong Chae Jae Kwan Kim 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2003年第1期87-98,共12页
The distinct element method(DEM)has been used successfully for the dynamic analysis of rigid block sys- tems.One of many difficulties associated with DEM is modeling of damping.In this paper,new procedures are propose... The distinct element method(DEM)has been used successfully for the dynamic analysis of rigid block sys- tems.One of many difficulties associated with DEM is modeling of damping.In this paper,new procedures are proposed for the damping modeling and its numerical implementation in distinct element analysis of rigid muhi-block systems.The stiff- ness proportional damping is constructed for the prescribed damping ratio,based on the non-zero fundamental frequency ef- fective during the time interval while the boundary conditions remain essentially constant.At this time interval,the funda- mental frequency can be estimated without complete eigenvalue analysis.The damping coefficients will vary while the damp- ing ratio remains the same throughout the entire analysis.A new numerical procedure is developed to prevent unnecessary energy loss that can occur during the separation phases.These procedures were implemented in the development of the dis- tinet element method for the dynamic analyses of piled multi-block systems.The analysis results |or the single-block and two-block systems were in a good agreement with the analytic predictions.Applications to the seismic analyses of piled four- block systems revealed that the new procedures can make a significant difference and may lead to much-improved results. 展开更多
关键词 multi-block systems stiffness proportional damping ROCKING impact distinet element method rigid body dynamics
下载PDF
Analysis for the Deployment of Single-Point Mooring Buoy System Based on Multi-Body Dynamics Method 被引量:5
3
作者 常宗瑜 唐原广 +2 位作者 李华军 杨建明 王磊 《China Ocean Engineering》 SCIE EI 2012年第3期495-506,共12页
Deployment of buoy systems is one of the most important procedures for the operation of buoy system. In the present study, a single-point mooring buoy system which contains surface buoy, cable segments with components... Deployment of buoy systems is one of the most important procedures for the operation of buoy system. In the present study, a single-point mooring buoy system which contains surface buoy, cable segments with components, anchor and so on is modeled by applying multi-body dynamics method. The motion equations are developed in discrete node description and fully Cartesian coordinates. Then numerical method is used to solve the ordinary differential equations and dynamics simulations are achieved while anchor is casting from board. The trajectories and velocities of different nodes without current and with current in buoy system are obtained. The transient tension force of each part of the cable is analyzed in the process of deployment. Numerical results indicate that the transient payload increases to a peak value when the anchor is touching the seabed and the maximum tension force will vary with different floating configuration. This work is helpful for design and deployment planning of buoy system. 展开更多
关键词 multi-body dynamics method DEPLOYMENT single-point mooring buoy system fully Cartesian coordinates
下载PDF
Discrete time transfer matrix method for dynamics of multibody system with flexible beams moving in space 被引量:4
4
作者 Xiao-Ting Rui Edwin Kreuzer +1 位作者 Bao Rong Bin He 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第2期490-504,共15页
In this paper, by defining new state vectors and developing new transfer matrices of various elements mov- ing in space, the discrete time transfer matrix method of multi-rigid-flexible-body system is expanded to stud... In this paper, by defining new state vectors and developing new transfer matrices of various elements mov- ing in space, the discrete time transfer matrix method of multi-rigid-flexible-body system is expanded to study the dynamics of multibody system with flexible beams moving in space. Formulations and numerical example of a rigid- flexible-body three pendulums system moving in space are given to validate the method. Using the new method to study the dynamics of multi-rigid-flexible-body system mov- ing in space, the global dynamics equations of system are not needed, the orders of involved matrices of the system are very low and the computational speed is high, irrespec- tive of the size of the system. The new method is simple, straightforward, practical, and provides a powerful tool for multi-rigid-flexible-body system dynamics. 展开更多
关键词 Multi-rigid-flexible-body system Spatial mo- tion dynamics Discrete time transfer matrix method
下载PDF
STUDY ON DYNAMICS, STABILITY AND CONTROL OF MULTI-BODY FLEXIBLE STRUCTURE SYSTEM IN FUNCTIONAL SPACE
5
作者 XU Jian-guo(徐建国) +1 位作者 JIA Jun-guo(贾军国) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第12期1410-1421,共12页
The dynamics, stability and control problem of a kind of infinite dimensional system are studied in the functional space with the method of modern Mathematics. First, the dynamical control model of the distributed par... The dynamics, stability and control problem of a kind of infinite dimensional system are studied in the functional space with the method of modern Mathematics. First, the dynamical control model of the distributed parameter system with multi-body flexible and multi-topological structure was established which has damping, gyroscopic parts and constrained damping. Secondly, the necessary and sufficient condition of controllability and observability, the stability theory and asymptotic property of the system were obtained. These results expand the theory of the field about the dynamics and control of the system with multi-body flexible structure, and have important engineering significance. 展开更多
关键词 multi-body flexible system dynamics STABILITY CONTROL functional space
下载PDF
Perturbation Dynamics and Its Application for Parachute-Munition System 被引量:3
6
作者 唐乾刚 张青斌 +1 位作者 张晓今 杨涛 《Defence Technology(防务技术)》 SCIE EI CAS 2007年第4期272-274,共3页
The nine-degree-freedom dynamic model of the parachute-munition system is developed by the theories and the analysis methods of parachute dynamics and multibody dynamics.On the basis of the above model,a linear five-d... The nine-degree-freedom dynamic model of the parachute-munition system is developed by the theories and the analysis methods of parachute dynamics and multibody dynamics.On the basis of the above model,a linear five-degree-of-freedom dynamic model is developed by linearization at the steady state.A new algorithm,which can be fused with submunition kinematics and used in target identification,is developed by the principle of parachute dynamics.The simulation program is developed and used to remove the influence of wind gust on hitting accuracy.The successful airdrop test demonstrates that the new method can be used in the guidance of smart munition. 展开更多
关键词 基本力学 动态系统 射击 降落伞
下载PDF
Life Prediction Based on Transient Dynamics Analysis of Van Semi-trailer with Air Suspension System 被引量:3
7
作者 LI Liang SONG Jian HE Lin ZHANG Mengjun LI Hongzhi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第3期372-379,共8页
The early fatigue damage in the van-body of the semi-trailer is often caused by the unique mechanical characteristics and the dynamic impact of the loads.The traditional finite element method with static strength anal... The early fatigue damage in the van-body of the semi-trailer is often caused by the unique mechanical characteristics and the dynamic impact of the loads.The traditional finite element method with static strength analysis cannot support the fatigue design of van-body;thus,the dynamics analysis should be adopted for the endurance performance.The accurate dynamics model to describe the transient impacts of all kinds of uneven road and the proper system transfer functions to calculate the load transfer effects from tire to van-body are two critical factors for transient dynamics analysis.In order to evaluate the dynamic performance,the dynamics model of the trailer with the air suspension is brought forward.Then the analysis method of the power spectral density (PSD) is set up to study the transient responses of the road dynamic impacts.The transient responses transferred from axles to van-body are calculated,such as dynamic stress,dynamic RMS acceleration,and dynamic load factors.Based on the above dynamic responses,the fatigue life of van-body is predicted with the finite element analysis (FEA) method.Applying the test parameters of the trailer with air suspension,the simulation system with Matlab/Simulink is constructed to describe the dynamic responses of the impacts of the tested PSD of the vehicle axles,and then the fatigue life is predicted with FEA method.The simulated results show that the vibration level of the van-body with air suspension is reduced and the fatigue life is improved.The real vehicle tests on different roads are carried out,and the test results validate the accuracy of the simulation system.The proposed fatigue life prediction method is effective for the virtual design of auto-body. 展开更多
关键词 van-body air suspension system transient dynamics power spectral density (PSD) life prediction
下载PDF
DYNAMIC CHARACTERISTICS ON PRECISION NC LATHE BASED ON MULTI-BODY SYSTEM THEORY
8
作者 Wu Nanxing Sun Qinghong +1 位作者 Zhang Yonghong Yu Dongling 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第4期566-570,共5页
Based on multi-body system theory and the mainshafl system of precision NC lathe as object investigated, it is treated as a coupled rigid-flexible multi-body system which is made up of some rigid and elastic bodies in... Based on multi-body system theory and the mainshafl system of precision NC lathe as object investigated, it is treated as a coupled rigid-flexible multi-body system which is made up of some rigid and elastic bodies in an especial linking mode. And a dynamic model is established, The problems of computing vibration characteristics are resolved by using multi-body system transfer matrix method, Resutts show that the mainshaft system of NC lathe is in the stable and reliable working area all the time. The method is simple and easy, the idea is clear. In addition, the method can be easily used and popularized in the other multi-body system. 展开更多
关键词 Multi-body system Mainshaft system Transfer matrix method dynamic characteristics NC lathe
下载PDF
Coupled Vibration Analysis of Vehicle-Bridge System Based on Multi-Boby Dynamics
9
作者 Deshan Shan Shengai Cui Zhen Huang 《Journal of Transportation Technologies》 2013年第2期1-6,共6页
For establishing the refined numerical simulation model for coupled vibration between vehicle and bridge, the refined three-dimensional vehicle model is setup by multi-body system dynamics method, and finite element m... For establishing the refined numerical simulation model for coupled vibration between vehicle and bridge, the refined three-dimensional vehicle model is setup by multi-body system dynamics method, and finite element method of dynamic model is adopted to model the bridge. Taking Yujiang River Bridge on Nanning-Guangzhou railway line in China as study background, the?refined numerical simulation model of whole vehicle and whole bridge system for coupled vibration analysis is set up. The dynamic analysis model of the cable-stayed bridge is established by finite element method, and the natural vibration properties of the bridge are analyzed. The German ICE Electric Multiple Unit (EMU) train refined three-dimensional space vehicle model is set up by multi-system dynamics software SIMPACK, and the multiple non-linear properties are considered. The space vibration responses are calculated by co-simulation based on multi-body system dynamics and finite element method when the ICE EMU train passes the long span cable-stayed bridge at different speeds. In order to test if the bridge has the sufficient lateral or vertical rigidity and the operation stability is fine. The calculation results show: The operation safety can be guaranteed, and comfort?index is “excellent”. The bridge has sufficient rigidity, and vibration is in good condition. 展开更多
关键词 CABLE-STAYED BRIDGE Coupled Vibration CO-SIMULATION Multi-body system dynamics FINITE ELEMENT Method
下载PDF
Dynamic Analysis of the Seafloor Pilot Miner Based on Single-Body Vehicle Model and Discretized Track-Terrain Interaction Model 被引量:5
10
作者 戴瑜 刘少军 李力 《China Ocean Engineering》 SCIE EI 2010年第1期145-160,共16页
In order to achieve the complex dynamic analysis of the self-propelled seafloor pilot miner moving on the seafloor of extremely cohesive soft soil and further to make it possible to integrate the miner system with som... In order to achieve the complex dynamic analysis of the self-propelled seafloor pilot miner moving on the seafloor of extremely cohesive soft soil and further to make it possible to integrate the miner system with some subsystems to form the complete integrated deep ocean mining pilot system and perform dynamic analysis, a new method for the dynamic modeling and analysis of the miner is proposed and developed in this paper, resulting in a simplified 3D single-body vehicle model with three translational and three rotational degrees of freedom, while the track-terrain interaction model is built by partitioning the track-terrain interface into discrete elements with parameterized force dements built on the theory of terramechanics acting on each discrete dement. To evaluate and verify the correctness and effectiveness of this new modeling and analysis method, typical comparative studies with regard to computational efficiency and solution accuracy are carried out between the traditional modeling method of building the tracked vehicle as a multi-body model and the new modeling method. In full consideration of the particMar structure design of the pilot miner, the special characteristics of the seafioor soil and the hydrodynamic force of near-seafloor currnt, the dynamic simulation analysis of the miner is performed and discussed, which can provide useful guidance and reference for the practical miner system in design and operation. This new method can not only realize the rapid dynamic simulation analysis of the miner but also make possible the integration and rapid dynamic analysis of the complete integrated deep ocean mining pilot system in further researches. 展开更多
关键词 deep-ocean mining system self-propelled seafloor pilot miner single-body model multi-body model discretized track-terrain interaction model dynamic analysis
下载PDF
Augmented Eigenvector and Its Orthogonality of Linear Multi-rigid-flexibel-body System 被引量:2
11
作者 芮筱亭 贠来峰 +1 位作者 王国平 陆毓琪 《Defence Technology(防务技术)》 SCIE EI CAS 2008年第2期100-105,共6页
The orthogonality of eigenvector is a precondition to compute the dynamic responses of linear multi-rigid-flexible-body system using the classical modal analysis method. For a linear multi-rigid-flexible-body system, ... The orthogonality of eigenvector is a precondition to compute the dynamic responses of linear multi-rigid-flexible-body system using the classical modal analysis method. For a linear multi-rigid-flexible-body system, the eigenfunction does not satisfy the orthogonality under ordinary meaning. A new concept--augmented eigenvector is introduced, which is used to overcome the orthogonality problem of eigenvectors of linear multi-rigid-flexible-body system. The constitution method and the orthogonality of augmented eigenvector are expatiated. After the orthogonality of augmented eigenvector is acquired, the coupling of coordinates in dynamics equations can be released, which makes it possible to analyze exactly the dynamic responses of linear multi-rigid-flexible-body system using the classical modal analysis method. 展开更多
关键词 振动波 正交性 特征向量 动力学
下载PDF
An Integrated Dynamic Model of Ocean Mining System and Fast Simulation of Its Longitudinal Reciprocating Motion 被引量:3
12
作者 戴瑜 刘少军 《China Ocean Engineering》 SCIE EI CSCD 2013年第2期231-244,共14页
An integrated dynamic model of China's deep ocean mining system is developed and the fast simulation analysis of its longitudinal reciprocating motion operation processes is achieved. The seafloor tracked miner is bu... An integrated dynamic model of China's deep ocean mining system is developed and the fast simulation analysis of its longitudinal reciprocating motion operation processes is achieved. The seafloor tracked miner is built as a three-dimensional single-body model with six-degree-of-freedom. The track-terrain interaction is modeled by partitioning the track-terrain interface into a certain number of mesh elements with three mutually perpendicular forces, including the normal force, the longitudinal shear force and the lateral shear force, acting on the center point of each mesh element. The hydrodynamic force of the miner is considered and applied. By considering the operational safety and collection efficiency, two new mining paths for the miner on the seafloor are proposed, which can be simulated with the established single-body dynamic model of the miner. The pipeline subsystem is built as a three-dimensional multi-body discrete element model, which is divided into rigid elements linked by flexible connectors. The flexible connector without mass is represented by six spring-damper elements. The external hydrodynamic forces of the ocean current from the longitudinal and lateral directions are both considered and modeled based on the Morison formula and applied to the mass center of each corresponding discrete rigid element. The mining ship is simplified and represented by a general kinematic point, whose heave motion induced by the ocean waves and the longitudinal and lateral towing motions are considered and applied. By integrating the single-body dynamic model of the miner and the multi-body discrete element dynamic model of the pipeline, and defining the kinematic equations of the mining ship, the integrated dynamic model of the total deep ocean mining system is formed. The longitudinal reciprocating motion operation modes of the total mining system, which combine the active straight-line and turning motions of the miner and the ship, and the passive towed motions of the pipeline, are proposed and simulated with the developed 3D dynamic model. Some critical simulation results are obtained and analyzed, such as the motion trajectories of key subsystems, the velocities of the buoyancy modules and the interaction forces between subsystems, which in a way can provide important theoretical basis and useful technical reference for the practical deep ocean mining system analysis, operation and control. 展开更多
关键词 deep ocean mining system single-body model track-terrain interaction model discrete element model longitudinal reciprocating motion operation mode dynamic simulation analysis
下载PDF
Dynamic Simulation for Missile Erection System
13
作者 姚晓光 郭晓松 +1 位作者 冯永保 高钦和 《Defence Technology(防务技术)》 SCIE EI CAS 2007年第4期262-267,共6页
In order to study the dynamic characteristics of the missile erection system,it can be considered as a rigid-flexible coupling multi-body system.Firstly,the actual system is abstracted as an equal and simplified one a... In order to study the dynamic characteristics of the missile erection system,it can be considered as a rigid-flexible coupling multi-body system.Firstly,the actual system is abstracted as an equal and simplified one and then the forces applied to it are analyzed.Secondly,the rigid-flexible coupling dynamic simulation for erection system is accomplished by use of the system simulation software,for example Pro/E,ADAMS,ANSYS,MATLAB/Simulink,etc.Finally,having the aid of simulation results,the kinetic and dynamic characteristics of the flexible bodies in erection system are analyzed.The simulation considering the erection system as a rigid-flexible coupling system can provide valuable results to the research of its kinetic,dynamic and vibrational characteristics. 展开更多
关键词 力学 导弹直立系统 刚柔耦合 系统模拟
下载PDF
基于动态嵌套网格技术的载荷出舱过程研究
14
作者 陈超群 张红英 +2 位作者 陈建平 童明波 曾建江 《航天返回与遥感》 CSCD 北大核心 2024年第2期29-40,共12页
针对内装载荷在空中分离出舱过程中存在的安全性和姿态稳定性问题,文章采用动态嵌套网格结合罚函数的研究方法对载荷在考虑适配器碰撞下的出舱分离过程进行了数值模拟。相较于以往的研究,该方法将分离过程中的气动特性由离散的稳态计算... 针对内装载荷在空中分离出舱过程中存在的安全性和姿态稳定性问题,文章采用动态嵌套网格结合罚函数的研究方法对载荷在考虑适配器碰撞下的出舱分离过程进行了数值模拟。相较于以往的研究,该方法将分离过程中的气动特性由离散的稳态计算转变为连续的瞬态计算,将适配器碰撞由特征点法估算转变为节点-面法精细计算,实现了非定常流场与多体碰撞的耦合求解,拥有更好的保真性。文章首先通过与美国空军Arnolds工程发展中心风洞实验室的标模试验进行对比,验证了所采用的数值方法的准确性;随后建立了载荷出舱系统仿真模型并分析了标准工况下的出舱特性以及初始速度、初始攻角对载荷在牵引伞作用下出舱过程的影响。结果表明:标准工况下载荷能够安全平稳出舱;初始速度越低,分离过程越平稳,适配器受压缩程度越低,马赫数Ma=0.5时运载器与载荷的最小间距相较于Ma=0.8时增大了1 mm;初始攻角较大对分离时的安全性和稳定性有不利影响,攻角ɑ=15°时适配器摩擦力是ɑ=5°时的2.67倍。该方法适用于采用适配器作为安全保护措施的载荷出舱系统的数值模拟研究,所得结论可为研究载荷出舱系统分离过程提供一定参考。 展开更多
关键词 多体系统空中分离 动态嵌套网格 罚函数 计算流体力学 适配器 牵引伞
下载PDF
基于实测波频数据的海洋核动力平台多体动力特性评估
15
作者 郭冲冲 武文华 +1 位作者 吕柏呈 吴国东 《中国海洋平台》 2024年第2期40-47,共8页
基于现有的渤海浮式生产储卸油装置(Floating Production Storage and Offloading,FPSO)实测数据,开展海洋核动力平台(Marine Nuclear Power Platform,MNPP)定位系统多体动力特性分析。建立MNPP定位系统的多刚体动力学模型,通过MNPP与... 基于现有的渤海浮式生产储卸油装置(Floating Production Storage and Offloading,FPSO)实测数据,开展海洋核动力平台(Marine Nuclear Power Platform,MNPP)定位系统多体动力特性分析。建立MNPP定位系统的多刚体动力学模型,通过MNPP与渤海某FPSO的响应幅值算子(Response Amplitude Operator,RAO),计算FPSO船体实测数据与MNPP响应的比例系数;根据FPSO船体实测数据计算MNPP六自由度数据,并采用经验模态分解(Empirical Mode Decomposition,EMD)方法保留原始数据的波频成分,在此基础上计算定位系统的系泊回复能力和各铰节点的受力行为。通过与FPSO软刚臂系泊系统受力状态进行对比分析,验证MNPP定位系统在实测海况下设计的合理性。可为MNPP系泊结构设计和安全运行提供科学的分析手段。 展开更多
关键词 海洋核动力平台 浮式生产储卸油装置 定位系统 多体动力学 实测数据 响应幅值算子
下载PDF
城市轨道交通车体垂向振动对弓网受流性能的影响
16
作者 董晓 周宁 +1 位作者 张欣 魏海飞 《城市轨道交通研究》 北大核心 2024年第4期22-27,32,共7页
[目的]既有对接触网系统动力学仿真的研究大多基于受电弓底座仅有纵向自由度的假设,忽略了轮轨激励引起的车体垂向振动对弓网受流性能的影响,需要将车辆-受电弓-接触网(以下简称“车-弓-网”)作为一个整体予以研究。[方法]分别建立了刚... [目的]既有对接触网系统动力学仿真的研究大多基于受电弓底座仅有纵向自由度的假设,忽略了轮轨激励引起的车体垂向振动对弓网受流性能的影响,需要将车辆-受电弓-接触网(以下简称“车-弓-网”)作为一个整体予以研究。[方法]分别建立了刚性接触网、柔性接触网两种接触网类型下的弓网耦合动力学模型及车-弓-网多体动力学模型。在案例线路上进行了弓网动态受流试验,对所建的刚性接触网车-弓-网多体动力学模型的计算结果进行了可行性验证。基于列车运行速度为80 km/h、90 km/h、100 km/h、110 km/h及120 km/h五种速度工况,选取了其中两种速度工况对刚性接触网受电弓绝缘子底座处的垂向动态响应进行了分析,并在五种速度工况下分别对两种接触网类型下弓网模型、车-弓-网模型的各动态响应参数进行了对比分析。[结果及结论]所建车-弓-网多体动力学模型的模拟计算结果是合理的。车体振动会对弓网受流性能产生一定影响:柔性接触网下车体垂向振动对弓网受流性能影响很小,可不予考虑;刚性接触网下,与未考虑车体垂向振动的弓网模型相比,考虑了车体垂向振动的车-弓-网模型计算得到的弓网接触压力统计最小值、弓头最大抬升位移均随列车运行速度的增加而增加,弓网接触压力统计最小值变化率的最大值为24.7%,弓头最大抬升位移变化率的最大值为4.2%。 展开更多
关键词 城市轨道交通 供电系统 车-弓-网关系 弓网受流性能 车体垂向振动 多体动力学模型
下载PDF
基于BCALoD的FPSO软刚臂系泊系统疲劳分析
17
作者 罗起航 武文华 +1 位作者 吕柏呈 郭冲冲 《中国海洋平台》 2024年第2期63-71,108,共10页
针对软刚臂系泊系统铰节点在服役过程中出现的疲劳损伤问题,提出一种基于原型监测和局部密度双向聚类算法(Bidirectional Clustering Algorithm based on Local Density,BCALoD)的疲劳寿命计算方法。采用BCALoD算法对获得的船体六自由... 针对软刚臂系泊系统铰节点在服役过程中出现的疲劳损伤问题,提出一种基于原型监测和局部密度双向聚类算法(Bidirectional Clustering Algorithm based on Local Density,BCALoD)的疲劳寿命计算方法。采用BCALoD算法对获得的船体六自由度进行工况分类,运用多体动力学将运动数据转算为受力时程,将其作为铰节点疲劳寿命分析的载荷谱。采用Abaqus软件建立各铰节点有限元模型以计算热点应力,结合Miner线性疲劳累积损伤理论和雨流计数方法计算疲劳寿命。进一步分析评估基于实测数据的铰节点疲劳设计指标,指出该FPSO软刚臂上铰节点的疲劳寿命不足以支持其完成服役,且各铰节点难以统一维护和更换。本研究可为在役软刚臂系泊系统的疲劳寿命计算提供一种新的载荷处理方法,为未来海洋平台的设计提供参考。 展开更多
关键词 软刚臂单点系泊系统 疲劳寿命 原型监测 局部密度双向聚类算法 多体动力学 铰节点
下载PDF
薄壁四点接触球轴承-腕部关节系统接触动力学分析
18
作者 赵宝旭 姚廷强 +1 位作者 钱建伟 赵德春 《机电工程》 CAS 北大核心 2024年第5期870-877,共8页
在机器人实际工况中,针对含有薄壁四点接触球轴承的机器人腕部关节系统的运动稳定性问题,对腕部系统模型进行了简化设计和仿真研究。在考虑薄壁结构的弹性变形和动态接触作用耦合影响的基础上,建立了刚柔耦合工业机器人腕部关节系统模型... 在机器人实际工况中,针对含有薄壁四点接触球轴承的机器人腕部关节系统的运动稳定性问题,对腕部系统模型进行了简化设计和仿真研究。在考虑薄壁结构的弹性变形和动态接触作用耦合影响的基础上,建立了刚柔耦合工业机器人腕部关节系统模型,分析了不同受载工况和正反转驱动下的变形规律和动态特性。首先,基于多体动力学和Hertz接触理论,设计了包含薄壁四点接触球轴承和中空轴及基座的腕部关节系统刚柔耦合接触动力学仿真模型;然后,考虑薄壁中空轴、基座、轴承套圈和保持架的结构弹性变形、钢球和套圈滚道、保持架的动态接触作用,研究了机器人腕部关节系统两种实际工况对保持架和钢球角速度、保持架和薄壁基座振动位移、钢球与套圈的动态接触力的影响;最后,计算分析了两种工况下腕部关节系统的动态载荷规律和振动响应特性。研究结果表明:在相对较大的径向载荷作用下,保持架和钢球会出现打滑现象,速度呈现周期波动,保持架和基座具有更好的运动稳定性,其薄壁轴承内部载荷降低,主副接触对均承担联合载荷,轴承内部载荷稳定性也更好。该仿真模型及结果可以为薄壁腕部关节系统的动力学分析与设计提供参考。 展开更多
关键词 刚柔耦合工业机器人 腕部关节系统模型 薄壁四点接触球轴承 结构弹性变形 振动特性 动态接触 薄壁中空轴-球轴承-基座的刚柔耦合多体接触动力学模型
下载PDF
高铁车辆间油压减振器特性及对高铁动力学性能的影响
19
作者 吴忠发 王文林 +1 位作者 樊友权 陈文韬 《液压与气动》 北大核心 2024年第4期67-73,共7页
优化车端悬挂及其核心部件对提高高速列车的运行动力学性能具有重要意义。以某动车组车辆间减振器为研究对象,通过分析其阀片式阀系的流量-压力特性,建立了其阻尼特性的参数化模型,并通过产品台架实验验证了仿真结果和理论模型的正确性... 优化车端悬挂及其核心部件对提高高速列车的运行动力学性能具有重要意义。以某动车组车辆间减振器为研究对象,通过分析其阀片式阀系的流量-压力特性,建立了其阻尼特性的参数化模型,并通过产品台架实验验证了仿真结果和理论模型的正确性。基于SIMPACK软件环境建立了该动车组的多体系统动力学仿真模型,研究了车辆间减振器阻尼系数对动车组动力学包括会车响应的影响,结果表明:车辆间减振器能明显地抑制车辆正常运行期间车端的复杂横向振动,提高乘坐舒适性,还能极大地抑制会车期间车体的大幅复杂横向晃动尤其是车体侧滚,并减小轮轴横向力和脱轨系数,增强高速列车的整体性和安全性。所获得的车辆间减振器参数化数学模型、车辆多体动力学仿真模型以及研究结果为下一步该车辆间减振器阻尼特性的动力学优选以及减振器产品本身的优化设计提供了基础。 展开更多
关键词 车辆间减振器 阻尼特性 参数化建模 高速动车组 多体动力学 横向振动 会车
下载PDF
可变弯度导叶调节机构柔性多体仿真
20
作者 曹铁男 杨治中 王小颖 《航空发动机》 北大核心 2024年第2期88-94,共7页
为考察可变弯度导叶(VIGV)调节机构在运动过程中各零件的变形以及变形对调节精度、各叶片调节角度一致性的影响,利用有限元软件ABAQUS建立VIGV调节机构的柔性和刚性多体动力学3维模型。研究了柔性与刚体模型调节机构运动差异,并分析了... 为考察可变弯度导叶(VIGV)调节机构在运动过程中各零件的变形以及变形对调节精度、各叶片调节角度一致性的影响,利用有限元软件ABAQUS建立VIGV调节机构的柔性和刚性多体动力学3维模型。研究了柔性与刚体模型调节机构运动差异,并分析了变形量对叶片角度调节的影响。在此基础上,对联动环径向限位、驱动力加载速率以及运动副摩擦阻力对机构调节精度等影响进行分析。结果表明:在调节角度较小时,柔性模型与刚体模型分析结果基本相当,随着调节角度的增大,各零件的变形对调节角度的影响逐渐增大,当L形杆转动0.5 rad时,二者可调叶片调节角度相差约0.9。;在运动过程中,运动副摩擦阻力的增大将增大机构运动所需的驱动力,驱动力加载速率对叶片角度调节的影响在一定范围内可以忽略;联动环径向限位的取消或分布的不均匀均将引起叶片调节角度不同程度的差异,无联动环径向限位下,各摇臂之间的调节角度存在最大相差约0.3°的差异。 展开更多
关键词 可变弯度导叶调节机构 角度调节 柔性多体动力学 运动副 联动环 摇臂 风扇
下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部