The performance of the vehicle dynamics stability control system(DSC) is dominated by the accurate estimation of tire forces in real-time.The characteristics of tire forces are determined by tire dynamic states and ...The performance of the vehicle dynamics stability control system(DSC) is dominated by the accurate estimation of tire forces in real-time.The characteristics of tire forces are determined by tire dynamic states and parameters,which vary in an obviously large scope along with different working conditions.Currently,there have been many methods based on the nonlinear observer to estimate the tire force and dynamic parameters,but they were only used in off-line analysis because of the computation complexity and the dynamics differences of four tires in the steering maneuver conditions were not considered properly.This paper develops a novel algorithm to observe tire parameters in real-time controller for DSC.The algorithm is based on the sensor-fusion technology with the signals of DSC sensors,and the tire parameters are estimated during a set of maneuver courses.The calibrated tire parameters in the control cycle are treated as the elementary states for vehicle dynamics observation,in which the errors between the calculated and the measured vehicle dynamics are used as the correcting factors for the tire parameter observing process.The test process with a given acceleration following a straight line is used to validate the estimation method of the longitudinal stiffness;while the test process with a given steering angle is used to validate the estimated value of the cornering stiffness.The ground test result shows that the proposed algorithm can estimate the tire stiffness accurately with an acceptable computation cost for real-time controller only using DSC sensor signal.The proposed algorithm can be an efficient algorithm for estimating the tire dynamic parameters in vehicle dynamics stability control system,and can be used to improve the robustness of the DSC controller.展开更多
Given the unconstrained characteristics of the multi-robot coordinated towing system,the rope can only provide a unidirectional constraint force to the suspended object,which leads to the weak ability of the system to...Given the unconstrained characteristics of the multi-robot coordinated towing system,the rope can only provide a unidirectional constraint force to the suspended object,which leads to the weak ability of the system to resist external disturbances and makes it difficult to control the trajectory of the suspended object.Based on the kinematics and statics of the multi-robot coordinated towing system with fixed base,the dynamic model of the system is established by using the Newton-Euler equations and the Udwadia-Kalaba equations.To plan the trajectories with high stability and strong control,trajectory planning is performed by combining the dynamics and stability of the towing system.Based on the dynamic stability of the motion trajectory of the suspended object,the stability of the suspended object is effectively improved through online real-time planning and offline manual adjustment.The effectiveness of the proposed method is verified by comparing the motion stability of the suspended object before and after planning.The results provide a foundation for the motion planning and coordinated control of the towing system.展开更多
We present a study on the dynamic stability of porous functionally graded(PFG)beams under hygro-thermal loading.The variations of the properties of the beams across the beam thicknesses are described by the power-law ...We present a study on the dynamic stability of porous functionally graded(PFG)beams under hygro-thermal loading.The variations of the properties of the beams across the beam thicknesses are described by the power-law model.Unlike most studies on this topic,we consider both the bending deformation of the beams and the hygro-thermal load as size-dependent,simultaneously,by adopting the equivalent differential forms of the well-posed nonlocal strain gradient integral theory(NSGIT)which are strictly equipped with a set of constitutive boundary conditions(CBCs),and through which both the stiffness-hardening and stiffness-softening effects of the structures can be observed with the length-scale parameters changed.All the variables presented in the differential problem formulation are discretized.The numerical solution of the dynamic instability region(DIR)of various bounded beams is then developed via the generalized differential quadrature method(GDQM).After verifying the present formulation and results,we examine the effects of different parameters such as the nonlocal/gradient length-scale parameters,the static force factor,the functionally graded(FG)parameter,and the porosity parameter on the DIR.Furthermore,the influence of considering the size-dependent hygro-thermal load is also presented.展开更多
The unsupported sleeper can change the load characteristics of ballast particles and thus affect the dynamic stability of a ballasted bed.In this work,a laboratory test was constructed on a ballasted track containing ...The unsupported sleeper can change the load characteristics of ballast particles and thus affect the dynamic stability of a ballasted bed.In this work,a laboratory test was constructed on a ballasted track containing unsupported sleepers.The ballasted track was excited by a wheelset,and the influence of unsupported sleepers on the dynamic stability of a ballasted bed was studied.The results show that the main frequency of the sleeper vibration appeared at 670 Hz,and the first-order rigid vibration mode at the frequency of 101 Hz had a significant effect on the condition without the unsupported sleeper.When the sleepers were continuously unsupported,the vibration damping effect of ballasted bed within the frequency range of 0–450 Hz was better than that at higher frequencies.Within the frequency range of 70–250 Hz,the vibration damping effect of the ballasted bed with unsupported sleepers was better than that without the unsupported sleeper.Owing to the excitation from the wheelset impact,the lateral resistance of the ballasted bed with unsupported sleepers whose hanging heights were 30,60,and 90 mm increased by 37.43%,12.25%,and 18.23%,respectively,while the lateral resistance of the ballasted bed without the unsupported sleeper remained basically unchanged.The unsupported sleeper could increase the difference in the quality of the ballasted bed between two adjacent sleepers.In addition,test results show that the hanging height of the unsupported sleeper had little effect on the lateral resistance of a ballasted bed without external excitation,but had an obvious effect on the rate of change of the lateral resistance of a ballasted bed and the acceleration amplitude of the sleeper vibration under the wheelset impact.展开更多
In the existing Statistics and Econometrics literature, there does not exist a statistical test which may test for all kinds of roots of the characteristic polynomial leading to an unstable dynamic response, i.e., pos...In the existing Statistics and Econometrics literature, there does not exist a statistical test which may test for all kinds of roots of the characteristic polynomial leading to an unstable dynamic response, i.e., positive and negative real unit roots, complex unit roots and the roots lying inside the unit circle. This paper develops a test which is sufficient to prove dynamic stability (in the context of roots of the characteristic polynomial) of a univariate as well as a multivariate time series without having a structural break. It covers all roots (positive and negative real unit roots, complex unit roots and the roots inside the unit circle whether single or multiple) which may lead to an unstable dynamic response. Furthermore, it also indicates the number of roots causing instability in the time series. The test is much simpler in its application as compared to the existing tests as the series is strictly stationary under the null (C01, C12).展开更多
Temporary capture efficiency is studied in the framework of the circular restricted three-body problem in two steps.First, a non-uniform distribution of test particles around the secondary's orbit is obtained by f...Temporary capture efficiency is studied in the framework of the circular restricted three-body problem in two steps.First, a non-uniform distribution of test particles around the secondary's orbit is obtained by fully accounting the secondary's gravitational influence. Second, the capture efficiency is computed based on the non-uniform distribution. Several factors influencing the result are discussed. By studying the capture efficiency in the circular restricted three-body problem of different mass ratios, a power-law relation between the capture efficiency(p) and the mass ratio(μ) is established, which is given by p ≈ 0.27 × μ^(0.53), within the range of 3.0035 ×10^(-6)≤ μ ≤ 3.0034 × 10^(-5). Taking the Sun–Earth system as an example, the influence from the orbit eccentricity of the secondary on the non-uniform distribution and the capture efficiency is studied. Our studies find that the secondary's orbit eccentricity has a negative influence on the capture efficiency.展开更多
This article investigates the improvement of dynamics stability of the ducted fan unmanned aerial vehicles(UAVs) by optimizing its mechanical-structure parameters. The instability phenomenon of the ducted fan unmanned...This article investigates the improvement of dynamics stability of the ducted fan unmanned aerial vehicles(UAVs) by optimizing its mechanical-structure parameters. The instability phenomenon of the ducted fan unmanned aerial vehicles takes place frequently that easily leads to vibration and even out of control, due to complicated airflow. The dynamics equations mirror its dynamics characteristics, which is primarily influenced by the mechanical-structure parameters of the whole system. Based on this, the optimization of mechanical-structure parameters will improve the dynamics stability of the whole system. Therefore, this paper uses the concept of Lyapunov exponents to build the quantification relationship between system's mechanical-structure parameters and its motion stability to enhance its stability. The simulation experimental results indicate that compared with the direct Lyapunov method, the most important advantage of the proposed method is its constructivity, so it is an effective tool for analysis of the motion stability of other non-linear systems such as robots.展开更多
The equations of motion of an insect with flapping wings are derived and then simplified to that of a flying body using the "rigid body" assumption. On the basis of the simplified equations of motion, the longitudin...The equations of motion of an insect with flapping wings are derived and then simplified to that of a flying body using the "rigid body" assumption. On the basis of the simplified equations of motion, the longitudinal dynamic flight stability of four insects (hoverfly, cranefly, dronefly and hawkmoth) in hovering flight is studied (the mass of the insects ranging from 11 to 1,648 mg and wingbeat frequency from 26 to 157Hz). The method of computational fluid dynamics is used to compute the aerodynamic derivatives and the techniques of eigenvalue and eigenvector analysis are used to solve the equations of motion. The validity of the "rigid body" assumption is tested and how differences in size and wing kinematics influence the applicability of the "rigid body" assumption is investigated. The primary findings are: (1) For insects considered in the present study and those with relatively high wingbeat frequency (hoverfly, drone fly and bumblebee), the "rigid body" assumption is reasonable, and for those with relatively low wingbeat frequency (cranefly and howkmoth), the applicability of the "rigid body" assumption is questionable. (2) The same three natural modes of motion as those reported recently for a bumblebee are identified, i.e., one unstable oscillatory mode, one stable fast subsidence mode and one stable slow subsidence mode. (3) Approximate analytical expressions of the eigenvalues, which give physical insight into the genesis of the natural modes of motion, are derived. The expressions identify the speed derivative Mu (pitching moment produced by unit horizontal speed) as the primary source of the unstable oscillatory mode and the stable fast subsidence mode and Zw (vertical force produced by unit vertical speed) as the primary source of the stable slow subsidence mode.展开更多
The lateral dynamic flight stability of a hovering model insect (dronefly) was studied using the method of computational fluid dynamics to compute the stability derivatives and the techniques of eigenvalue and eigen...The lateral dynamic flight stability of a hovering model insect (dronefly) was studied using the method of computational fluid dynamics to compute the stability derivatives and the techniques of eigenvalue and eigenvector analysis for solving the equations of motion. The main results are as following. (i) Three natural modes of motion were identified: one unstable slow divergence mode (mode 1), one stable slow oscillatory mode (mode 2), and one stable fast subsidence mode (mode 3). Modes 1 and 2 mainly consist of a rotation about the horizontal longitudinal axis (x-axis) and a side translation; mode 3 mainly consists of a rotation about the x-axis and a rotation about the vertical axis. (ii) Approximate analytical expressions of the eigenvalues are derived, which give physical insight into the genesis of the natural modes of motion. (iii) For the unstable divergence mode, td, the time for initial disturbances to double, is about 9 times the wingbeat period (the longitudinal motion of the model insect was shown to be also unstable and td of the longitudinal unstable mode is about 14 times the wingbeat period). Thus, although the flight is not dynamically stable, the instability does not grow very fast and the insect has enough time to control its wing motion to suppress the disturbances.展开更多
Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability...Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability under purely microseisms and the influence of five factors, including seismic amplitude, slope height, slope angle, strata inclination and strata thickness, were considered. The experimental results show that the natural frequency of the slope decreases and damping ratio increases as the earthquake loading times increase. The dynamic strength reduction method is adopted for the stability evaluation of the bedding rock slope in numerical simulation, and the slope stability decreases with the increase of seismic amplitude, increase of slope height, reduction of strata thickness and increase of slope angle. The failure mode of a mid-dip bedding rock slope in the shaking table test is integral slipping along the bedding surface with dipping tensile cracks at the slope rear edge going through the bedding surfaces. In the numerical simulation, the long-term stability of a mid-dip bedding slope is worst under frequent microseisms and the slope is at risk of integral sliding instability, whereas the slope rock mass is more broken than shown in the shaking table test. The research results are of practical significance to better understand the formation mechanism of reservoir landslides and prevent future landslide disasters.展开更多
This paper addresses the dynamic stability problem of columns and frames subjected to axially applied periodic loads. Such a structure can become unstable under certain combinations of amplitudes and frequencies of th...This paper addresses the dynamic stability problem of columns and frames subjected to axially applied periodic loads. Such a structure can become unstable under certain combinations of amplitudes and frequencies of the imposed load acting on its columns/beams. These are usually shown in the form of plots which describe regions of instability. The finite element method (FEM) is used in this work to analyse dynamic stability problems of columns. Two-noded beam elements are used for this purpose. The periodic loading is decomposed into various harmonics using Fourier series expansion. Computer codes in C++ using object oriented concepts are developed to determine the stability regions of columns subjected to periodic loading. A number of nu-merical examples are presented to illustrate the working of the program. The direct integration of the equations of motions of the discretised system is carried out using Newmark’s method to verify the results.展开更多
The paper is devoted to mathematical modelling of static and dynamic stability of a simply supported three-layered beam with a metal foam core. Mechanical properties of the core vary along the vertical direction. The ...The paper is devoted to mathematical modelling of static and dynamic stability of a simply supported three-layered beam with a metal foam core. Mechanical properties of the core vary along the vertical direction. The field of displacements is for- mulated using the classical broken line hypothesis and the proposed nonlinear hypothesis that generalizes the classical one. Using both hypotheses, the strains are determined as well as the stresses of each layer. The kinetic energy, the elastic strain energy, and the work of load are also determined. The system of equations of motion is derived using Hamilton's principle. Finally, the system of three equations is reduced to one equation of motion, in particular, the Mathieu equation. The Bubnov-Galerkin method is used to solve the system of equations of motion, and the Runge-Kutta method is used to solve the second-order differential equation. Numerical calculations are done for the chosen family of beams. The critical loads, unstable regions, angular frequencies of the beam, and the static and dynamic equilibrium paths are calculated analytically and verified numerically. The results of this study are presented in the forms of figures and tables.展开更多
Defect engineering has been regarded as a versatile strategy to maneuver the photocatalytic activity.However,there are a few studies concerning how to maintain the stability of defects,which is important to ensure sus...Defect engineering has been regarded as a versatile strategy to maneuver the photocatalytic activity.However,there are a few studies concerning how to maintain the stability of defects,which is important to ensure sustainable photocatalytic performance.Here,a novel strategy to modulate the structural properties of BiSbO_(4)using light-induced dynamic oxygen vacancies is reported by us for efficient and stable photocatalytic oxidation of formaldehyde.Interestingly,the continuous consumption and replenishment of vacancies(namely dynamic vacancies)ensure the dynamic stability of oxygen vacancies,thus guaranteeing the excellent photocatalytic stability.The oxygen vacancies could also accelerate the electron migration,inhibit the photogenerated electron/hole recombination,widen the light absorption spectra,and thus improve the photocatalytic formaldehyde removal performance.Combined with the results of in situ DRIFTS,the reaction mechanism for each step of formaldehyde oxidation is revealed.As supported by DFT calculation of Gibbs free energy,the introduction of oxygen vacancies into BiSbO_(4)can promote spontaneous process of formaldehyde oxidation.Our work highlights a promising approach for stabilizing the defects and proposes the photocatalytic reaction mechanism in combination with the thermodynamic functions.展开更多
Dynamic yaw stability derivatives of a gull bird are determined using Computational Fluid Dynamics(CFD) method. Two kinds of motions are applied for calculating the dynamic yaw stability derivatives CNr and CNβ. Th...Dynamic yaw stability derivatives of a gull bird are determined using Computational Fluid Dynamics(CFD) method. Two kinds of motions are applied for calculating the dynamic yaw stability derivatives CNr and CNβ. The first one relates to a lateral translation and, separately, to a yaw rotation. The second one consists of a combined translational and rotational motion. To determine dynamic yaw stability derivatives, the simulation of an unsteady flow with a bird model showing a harmonic motion is performed. The flow solution for each time step is obtained by solving unsteady Euler equations based on a finite volume approach for a small reduced frequency. Then, an evaluation of unsteady forces and moments for one cycle is conducted using harmonic Fourier analysis. The results of the dynamic yaw stability derivatives for both simulations of the model show a good agreement.展开更多
Considering that there are some limitations in analyzing the anti-sliding seismic stability of dam-foundation systems with the traditional pseudo-static method and response spectrum method, the dynamic strength reduct...Considering that there are some limitations in analyzing the anti-sliding seismic stability of dam-foundation systems with the traditional pseudo-static method and response spectrum method, the dynamic strength reduction method was used to study the deep anti-sliding stability of a high gravity dam with a complex dam foundation in response to strong earthquake-induced ground action. Based on static anti-sliding stability analysis of the dam foundation undertaken by decreasing the shear strength parameters of the rock mass in equal proportion, the seismic time history analysis was carried out. The proposed instability criterion for the dynamic strength reduction method was that the peak values of dynamic displacements and plastic strain energy change suddenly with the increase of the strength reduction factor. The elasto-plastic behavior of the dam foundation was idealized using the Drucker-Prager yield criterion based on the associated flow rule assumption. The result of elasto-plastic time history analysis of an overflow dam monolith based on the dynamic strength reduction method was compared with that of the dynamic linear elastic analysis, and the reliability of elasto-plastic time history analysis was confirmed. The results also show that the safety factors of the dam-foundation system in the static and dynamic cases are 3.25 and 3.0, respectively, and that the F2 fault has a significant influence on the anti-sliding stability of the high gravity dam. It is also concluded that the proposed instability criterion for the dynamic strength reduction method is feasible.展开更多
The paper studies the nonlinear dynamics of a flexible tethered satellite system subject to space environments, such as the J2 perturbation, the air drag force, the solar pressure, the heating effect, and the orbital ...The paper studies the nonlinear dynamics of a flexible tethered satellite system subject to space environments, such as the J2 perturbation, the air drag force, the solar pressure, the heating effect, and the orbital eccentricity. The flexible tether is modeled as a series of lumped masses and viscoelastic dampers so that a finite multi- degree-of-freedom nonlinear system is obtained. The stability of equilibrium positions of the nonlinear system is then analyzed via a simplified two-degree-freedom model in an orbital reference frame. In-plane motions of the tethered satellite system are studied numerically, taking the space environments into account. A large number of numerical simulations show that the flexible tethered satellite system displays nonlinear dynamic characteristics, such as bifurcations, quasi-periodic oscillations, and chaotic motions.展开更多
The parametric dynamic stability of resonant beams with various parameters under periodic axial force is studied. It is assumed that the theoretical formulations are based on Euler-Bernoulli beam theory. The governing...The parametric dynamic stability of resonant beams with various parameters under periodic axial force is studied. It is assumed that the theoretical formulations are based on Euler-Bernoulli beam theory. The governing equations of motion are derived by using the Rayleigh-Ritz method and transformed into Mathieu equations, which are formed to determine the stability criterion and stability regions for parametricallyexcited linear resonant beams. An improved stability criterion is obtained using periodic Lyapunov functions. The boundary points on the stable regions are determined by using a small parameter perturbation method. Numerical results and discussion are presented to highlight the effects of beam length, axial force and damped coefficient on the stability criterion and stability regions. While some stability rules are easy to anticipate, we draw some conclusions: with the increase of damped coefficient, stable regions arise; with the decrease of beam length, the conditions of the damped coefficient arise instead. These conclusions can provide a reference for the robust design of parametricallyexcited linear resonant sensors.展开更多
The longitudinal dynamic flight stability of a bumblebee in forward flight is studied. The method of computational fluid dynamics is used to compute the aerodynamic derivatives and the techniques of eigenvalue and eig...The longitudinal dynamic flight stability of a bumblebee in forward flight is studied. The method of computational fluid dynamics is used to compute the aerodynamic derivatives and the techniques of eigenvalue and eigenvector analysis are employed for solving the equations of motion. The primary findings are as the following. The forward flight of the bumblebee is not dynamically stable due to the existence of one (or two) unstable or approximately neutrally stable natural modes of motion. At hovering to medium flight speed [flight speed Ue = (0-3.5)m s^-1; advance ratio J = 0-0.44], the flight is weakly unstable or approximately neutrally stable; at high speed (Ue = 4.5 m s^-1; J = 0.57), the flight becomes strongly unstable (initial disturbance double its value in only 3.5 wingbeats).展开更多
In this paper, the general equations of dynamic stability for composite laminated plates are derived hyHamilton principle. These general equations can he used to consider those different factors that affect the dynami...In this paper, the general equations of dynamic stability for composite laminated plates are derived hyHamilton principle. These general equations can he used to consider those different factors that affect the dynamic stability of laminated plates. The factors are transverse shear deformation, initial imperfections, longitudinal and rotational inertia, and ply-angle of the fiber, etc. The solutions of the fundamental equations show that some important characteristics of the dynamic instability can only be got by the consideration and analysis of those factors展开更多
In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model ...In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model (which assumes that the frequency of wingbeat is sufficiently higher than that of the body motion, so that the flapping wings' degrees of freedom relative to the body can be dropped and the wings can be replaced by wingbeat-cycle-average forces and moments); the simulation solves the complete equations of motion coupled with the Navier-Stokes equations. Comparison between the theory and the simulation provides a test to the validity of the assumptions in the theory. One of the insects is a model dronefly which has relatively high wingbeat frequency (164 Hz) and the other is a model hawkmoth which has relatively low wingbeat frequency (26 Hz). The results show that the averaged model is valid for the hawkmoth as well as for the dronefly. Since the wingbeat frequency of the hawkmoth is relatively low (the characteristic times of the natural modes of motion of the body divided by wingbeat period are relatively large) compared with many other insects, that the theory based on the averaged model is valid for the hawkmoth means that it could be valid for many insects.展开更多
基金supported by National Natural Science Foundation of China (Grant No.50905092)
文摘The performance of the vehicle dynamics stability control system(DSC) is dominated by the accurate estimation of tire forces in real-time.The characteristics of tire forces are determined by tire dynamic states and parameters,which vary in an obviously large scope along with different working conditions.Currently,there have been many methods based on the nonlinear observer to estimate the tire force and dynamic parameters,but they were only used in off-line analysis because of the computation complexity and the dynamics differences of four tires in the steering maneuver conditions were not considered properly.This paper develops a novel algorithm to observe tire parameters in real-time controller for DSC.The algorithm is based on the sensor-fusion technology with the signals of DSC sensors,and the tire parameters are estimated during a set of maneuver courses.The calibrated tire parameters in the control cycle are treated as the elementary states for vehicle dynamics observation,in which the errors between the calculated and the measured vehicle dynamics are used as the correcting factors for the tire parameter observing process.The test process with a given acceleration following a straight line is used to validate the estimation method of the longitudinal stiffness;while the test process with a given steering angle is used to validate the estimated value of the cornering stiffness.The ground test result shows that the proposed algorithm can estimate the tire stiffness accurately with an acceptable computation cost for real-time controller only using DSC sensor signal.The proposed algorithm can be an efficient algorithm for estimating the tire dynamic parameters in vehicle dynamics stability control system,and can be used to improve the robustness of the DSC controller.
基金the National Natural Science Foundation of China(No.51965032)the National Natural Science Foundation of Gansu Province of China(No.22JR5RA319)+1 种基金the Excellent Dectoral Student Foundation of Gansu Province of China(No.23JRRA842)the Science and Technology Foundation of Gansu Province of China(No.21YF5WA060)。
文摘Given the unconstrained characteristics of the multi-robot coordinated towing system,the rope can only provide a unidirectional constraint force to the suspended object,which leads to the weak ability of the system to resist external disturbances and makes it difficult to control the trajectory of the suspended object.Based on the kinematics and statics of the multi-robot coordinated towing system with fixed base,the dynamic model of the system is established by using the Newton-Euler equations and the Udwadia-Kalaba equations.To plan the trajectories with high stability and strong control,trajectory planning is performed by combining the dynamics and stability of the towing system.Based on the dynamic stability of the motion trajectory of the suspended object,the stability of the suspended object is effectively improved through online real-time planning and offline manual adjustment.The effectiveness of the proposed method is verified by comparing the motion stability of the suspended object before and after planning.The results provide a foundation for the motion planning and coordinated control of the towing system.
基金Project supported by the National Natural Science Foundation of China(No.12172169)the Natural Sciences and Engineering Research Council of Canada(No.NSERC RGPIN-2023-03227)。
文摘We present a study on the dynamic stability of porous functionally graded(PFG)beams under hygro-thermal loading.The variations of the properties of the beams across the beam thicknesses are described by the power-law model.Unlike most studies on this topic,we consider both the bending deformation of the beams and the hygro-thermal load as size-dependent,simultaneously,by adopting the equivalent differential forms of the well-posed nonlocal strain gradient integral theory(NSGIT)which are strictly equipped with a set of constitutive boundary conditions(CBCs),and through which both the stiffness-hardening and stiffness-softening effects of the structures can be observed with the length-scale parameters changed.All the variables presented in the differential problem formulation are discretized.The numerical solution of the dynamic instability region(DIR)of various bounded beams is then developed via the generalized differential quadrature method(GDQM).After verifying the present formulation and results,we examine the effects of different parameters such as the nonlocal/gradient length-scale parameters,the static force factor,the functionally graded(FG)parameter,and the porosity parameter on the DIR.Furthermore,the influence of considering the size-dependent hygro-thermal load is also presented.
基金The present work was supported by the National Natural Science Foundation of China(No.52008395).
文摘The unsupported sleeper can change the load characteristics of ballast particles and thus affect the dynamic stability of a ballasted bed.In this work,a laboratory test was constructed on a ballasted track containing unsupported sleepers.The ballasted track was excited by a wheelset,and the influence of unsupported sleepers on the dynamic stability of a ballasted bed was studied.The results show that the main frequency of the sleeper vibration appeared at 670 Hz,and the first-order rigid vibration mode at the frequency of 101 Hz had a significant effect on the condition without the unsupported sleeper.When the sleepers were continuously unsupported,the vibration damping effect of ballasted bed within the frequency range of 0–450 Hz was better than that at higher frequencies.Within the frequency range of 70–250 Hz,the vibration damping effect of the ballasted bed with unsupported sleepers was better than that without the unsupported sleeper.Owing to the excitation from the wheelset impact,the lateral resistance of the ballasted bed with unsupported sleepers whose hanging heights were 30,60,and 90 mm increased by 37.43%,12.25%,and 18.23%,respectively,while the lateral resistance of the ballasted bed without the unsupported sleeper remained basically unchanged.The unsupported sleeper could increase the difference in the quality of the ballasted bed between two adjacent sleepers.In addition,test results show that the hanging height of the unsupported sleeper had little effect on the lateral resistance of a ballasted bed without external excitation,but had an obvious effect on the rate of change of the lateral resistance of a ballasted bed and the acceleration amplitude of the sleeper vibration under the wheelset impact.
文摘In the existing Statistics and Econometrics literature, there does not exist a statistical test which may test for all kinds of roots of the characteristic polynomial leading to an unstable dynamic response, i.e., positive and negative real unit roots, complex unit roots and the roots lying inside the unit circle. This paper develops a test which is sufficient to prove dynamic stability (in the context of roots of the characteristic polynomial) of a univariate as well as a multivariate time series without having a structural break. It covers all roots (positive and negative real unit roots, complex unit roots and the roots inside the unit circle whether single or multiple) which may lead to an unstable dynamic response. Furthermore, it also indicates the number of roots causing instability in the time series. The test is much simpler in its application as compared to the existing tests as the series is strictly stationary under the null (C01, C12).
基金supported by the National Natural Science Foundation of China(No.12233003)the support from Laboratory of Pinghu,Pinghu,China。
文摘Temporary capture efficiency is studied in the framework of the circular restricted three-body problem in two steps.First, a non-uniform distribution of test particles around the secondary's orbit is obtained by fully accounting the secondary's gravitational influence. Second, the capture efficiency is computed based on the non-uniform distribution. Several factors influencing the result are discussed. By studying the capture efficiency in the circular restricted three-body problem of different mass ratios, a power-law relation between the capture efficiency(p) and the mass ratio(μ) is established, which is given by p ≈ 0.27 × μ^(0.53), within the range of 3.0035 ×10^(-6)≤ μ ≤ 3.0034 × 10^(-5). Taking the Sun–Earth system as an example, the influence from the orbit eccentricity of the secondary on the non-uniform distribution and the capture efficiency is studied. Our studies find that the secondary's orbit eccentricity has a negative influence on the capture efficiency.
基金Supported by the National Natural Science Foundation of China(No.51575283)Central Public Welfare Basic Scientific Research Institute Special Funds(No.Y919008)
文摘This article investigates the improvement of dynamics stability of the ducted fan unmanned aerial vehicles(UAVs) by optimizing its mechanical-structure parameters. The instability phenomenon of the ducted fan unmanned aerial vehicles takes place frequently that easily leads to vibration and even out of control, due to complicated airflow. The dynamics equations mirror its dynamics characteristics, which is primarily influenced by the mechanical-structure parameters of the whole system. Based on this, the optimization of mechanical-structure parameters will improve the dynamics stability of the whole system. Therefore, this paper uses the concept of Lyapunov exponents to build the quantification relationship between system's mechanical-structure parameters and its motion stability to enhance its stability. The simulation experimental results indicate that compared with the direct Lyapunov method, the most important advantage of the proposed method is its constructivity, so it is an effective tool for analysis of the motion stability of other non-linear systems such as robots.
基金The project supported by the National Natural Science Foundation of China(10232010 and 10472008)
文摘The equations of motion of an insect with flapping wings are derived and then simplified to that of a flying body using the "rigid body" assumption. On the basis of the simplified equations of motion, the longitudinal dynamic flight stability of four insects (hoverfly, cranefly, dronefly and hawkmoth) in hovering flight is studied (the mass of the insects ranging from 11 to 1,648 mg and wingbeat frequency from 26 to 157Hz). The method of computational fluid dynamics is used to compute the aerodynamic derivatives and the techniques of eigenvalue and eigenvector analysis are used to solve the equations of motion. The validity of the "rigid body" assumption is tested and how differences in size and wing kinematics influence the applicability of the "rigid body" assumption is investigated. The primary findings are: (1) For insects considered in the present study and those with relatively high wingbeat frequency (hoverfly, drone fly and bumblebee), the "rigid body" assumption is reasonable, and for those with relatively low wingbeat frequency (cranefly and howkmoth), the applicability of the "rigid body" assumption is questionable. (2) The same three natural modes of motion as those reported recently for a bumblebee are identified, i.e., one unstable oscillatory mode, one stable fast subsidence mode and one stable slow subsidence mode. (3) Approximate analytical expressions of the eigenvalues, which give physical insight into the genesis of the natural modes of motion, are derived. The expressions identify the speed derivative Mu (pitching moment produced by unit horizontal speed) as the primary source of the unstable oscillatory mode and the stable fast subsidence mode and Zw (vertical force produced by unit vertical speed) as the primary source of the stable slow subsidence mode.
基金supported by the National Natural Science Foundation of China(10732030)the 111 Project(B07009)
文摘The lateral dynamic flight stability of a hovering model insect (dronefly) was studied using the method of computational fluid dynamics to compute the stability derivatives and the techniques of eigenvalue and eigenvector analysis for solving the equations of motion. The main results are as following. (i) Three natural modes of motion were identified: one unstable slow divergence mode (mode 1), one stable slow oscillatory mode (mode 2), and one stable fast subsidence mode (mode 3). Modes 1 and 2 mainly consist of a rotation about the horizontal longitudinal axis (x-axis) and a side translation; mode 3 mainly consists of a rotation about the x-axis and a rotation about the vertical axis. (ii) Approximate analytical expressions of the eigenvalues are derived, which give physical insight into the genesis of the natural modes of motion. (iii) For the unstable divergence mode, td, the time for initial disturbances to double, is about 9 times the wingbeat period (the longitudinal motion of the model insect was shown to be also unstable and td of the longitudinal unstable mode is about 14 times the wingbeat period). Thus, although the flight is not dynamically stable, the instability does not grow very fast and the insect has enough time to control its wing motion to suppress the disturbances.
基金National Natural Science Foundation of China under Grant No. 41372356the College Cultivation Project of the National Natural Science Foundation of China under Grant No. 2018PY30+1 种基金the Basic Research and Frontier Exploration Project of Chongqing,China under Grant No. cstc2018jcyj A1597the Graduate Scientific Research and Innovation Foundation of Chongqing,China under Grant No. CYS18026。
文摘Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability under purely microseisms and the influence of five factors, including seismic amplitude, slope height, slope angle, strata inclination and strata thickness, were considered. The experimental results show that the natural frequency of the slope decreases and damping ratio increases as the earthquake loading times increase. The dynamic strength reduction method is adopted for the stability evaluation of the bedding rock slope in numerical simulation, and the slope stability decreases with the increase of seismic amplitude, increase of slope height, reduction of strata thickness and increase of slope angle. The failure mode of a mid-dip bedding rock slope in the shaking table test is integral slipping along the bedding surface with dipping tensile cracks at the slope rear edge going through the bedding surfaces. In the numerical simulation, the long-term stability of a mid-dip bedding slope is worst under frequent microseisms and the slope is at risk of integral sliding instability, whereas the slope rock mass is more broken than shown in the shaking table test. The research results are of practical significance to better understand the formation mechanism of reservoir landslides and prevent future landslide disasters.
文摘This paper addresses the dynamic stability problem of columns and frames subjected to axially applied periodic loads. Such a structure can become unstable under certain combinations of amplitudes and frequencies of the imposed load acting on its columns/beams. These are usually shown in the form of plots which describe regions of instability. The finite element method (FEM) is used in this work to analyse dynamic stability problems of columns. Two-noded beam elements are used for this purpose. The periodic loading is decomposed into various harmonics using Fourier series expansion. Computer codes in C++ using object oriented concepts are developed to determine the stability regions of columns subjected to periodic loading. A number of nu-merical examples are presented to illustrate the working of the program. The direct integration of the equations of motions of the discretised system is carried out using Newmark’s method to verify the results.
基金Project supported by the Ministry of Science and Higher Education of Poland(Nos.04/43/DSPB/0085and 02/21/DSPB/3464)
文摘The paper is devoted to mathematical modelling of static and dynamic stability of a simply supported three-layered beam with a metal foam core. Mechanical properties of the core vary along the vertical direction. The field of displacements is for- mulated using the classical broken line hypothesis and the proposed nonlinear hypothesis that generalizes the classical one. Using both hypotheses, the strains are determined as well as the stresses of each layer. The kinetic energy, the elastic strain energy, and the work of load are also determined. The system of equations of motion is derived using Hamilton's principle. Finally, the system of three equations is reduced to one equation of motion, in particular, the Mathieu equation. The Bubnov-Galerkin method is used to solve the system of equations of motion, and the Runge-Kutta method is used to solve the second-order differential equation. Numerical calculations are done for the chosen family of beams. The critical loads, unstable regions, angular frequencies of the beam, and the static and dynamic equilibrium paths are calculated analytically and verified numerically. The results of this study are presented in the forms of figures and tables.
基金supported by the National Natural Science Foundation of China (21822601, 21777011, and 21501016)the Innovative Research Team of Chongqing (CXQT19023)
文摘Defect engineering has been regarded as a versatile strategy to maneuver the photocatalytic activity.However,there are a few studies concerning how to maintain the stability of defects,which is important to ensure sustainable photocatalytic performance.Here,a novel strategy to modulate the structural properties of BiSbO_(4)using light-induced dynamic oxygen vacancies is reported by us for efficient and stable photocatalytic oxidation of formaldehyde.Interestingly,the continuous consumption and replenishment of vacancies(namely dynamic vacancies)ensure the dynamic stability of oxygen vacancies,thus guaranteeing the excellent photocatalytic stability.The oxygen vacancies could also accelerate the electron migration,inhibit the photogenerated electron/hole recombination,widen the light absorption spectra,and thus improve the photocatalytic formaldehyde removal performance.Combined with the results of in situ DRIFTS,the reaction mechanism for each step of formaldehyde oxidation is revealed.As supported by DFT calculation of Gibbs free energy,the introduction of oxygen vacancies into BiSbO_(4)can promote spontaneous process of formaldehyde oxidation.Our work highlights a promising approach for stabilizing the defects and proposes the photocatalytic reaction mechanism in combination with the thermodynamic functions.
文摘Dynamic yaw stability derivatives of a gull bird are determined using Computational Fluid Dynamics(CFD) method. Two kinds of motions are applied for calculating the dynamic yaw stability derivatives CNr and CNβ. The first one relates to a lateral translation and, separately, to a yaw rotation. The second one consists of a combined translational and rotational motion. To determine dynamic yaw stability derivatives, the simulation of an unsteady flow with a bird model showing a harmonic motion is performed. The flow solution for each time step is obtained by solving unsteady Euler equations based on a finite volume approach for a small reduced frequency. Then, an evaluation of unsteady forces and moments for one cycle is conducted using harmonic Fourier analysis. The results of the dynamic yaw stability derivatives for both simulations of the model show a good agreement.
基金supported by the National Basic Research Program of China (973 Program,Grant No.2007CB714104)the National Natural Science Foundation of China (Grant No. 50779011)the Innovative Project for Graduate Students of Jiangsu Province (Grant No. CX09B_155Z)
文摘Considering that there are some limitations in analyzing the anti-sliding seismic stability of dam-foundation systems with the traditional pseudo-static method and response spectrum method, the dynamic strength reduction method was used to study the deep anti-sliding stability of a high gravity dam with a complex dam foundation in response to strong earthquake-induced ground action. Based on static anti-sliding stability analysis of the dam foundation undertaken by decreasing the shear strength parameters of the rock mass in equal proportion, the seismic time history analysis was carried out. The proposed instability criterion for the dynamic strength reduction method was that the peak values of dynamic displacements and plastic strain energy change suddenly with the increase of the strength reduction factor. The elasto-plastic behavior of the dam foundation was idealized using the Drucker-Prager yield criterion based on the associated flow rule assumption. The result of elasto-plastic time history analysis of an overflow dam monolith based on the dynamic strength reduction method was compared with that of the dynamic linear elastic analysis, and the reliability of elasto-plastic time history analysis was confirmed. The results also show that the safety factors of the dam-foundation system in the static and dynamic cases are 3.25 and 3.0, respectively, and that the F2 fault has a significant influence on the anti-sliding stability of the high gravity dam. It is also concluded that the proposed instability criterion for the dynamic strength reduction method is feasible.
基金supported by the National Natural Science Foundation of China(Nos.11002068 and11202094)the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(No.0113Y01)the Priority Academic Program of Jiangsu Higher Education Institutions
文摘The paper studies the nonlinear dynamics of a flexible tethered satellite system subject to space environments, such as the J2 perturbation, the air drag force, the solar pressure, the heating effect, and the orbital eccentricity. The flexible tether is modeled as a series of lumped masses and viscoelastic dampers so that a finite multi- degree-of-freedom nonlinear system is obtained. The stability of equilibrium positions of the nonlinear system is then analyzed via a simplified two-degree-freedom model in an orbital reference frame. In-plane motions of the tethered satellite system are studied numerically, taking the space environments into account. A large number of numerical simulations show that the flexible tethered satellite system displays nonlinear dynamic characteristics, such as bifurcations, quasi-periodic oscillations, and chaotic motions.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60927005)the 2012 Innovation Foundation of BUAA for PhD Graduatesthe Fundamental Research Funds for the Central Universities,China (Grant No. YWF-10-01-A17)
文摘The parametric dynamic stability of resonant beams with various parameters under periodic axial force is studied. It is assumed that the theoretical formulations are based on Euler-Bernoulli beam theory. The governing equations of motion are derived by using the Rayleigh-Ritz method and transformed into Mathieu equations, which are formed to determine the stability criterion and stability regions for parametricallyexcited linear resonant beams. An improved stability criterion is obtained using periodic Lyapunov functions. The boundary points on the stable regions are determined by using a small parameter perturbation method. Numerical results and discussion are presented to highlight the effects of beam length, axial force and damped coefficient on the stability criterion and stability regions. While some stability rules are easy to anticipate, we draw some conclusions: with the increase of damped coefficient, stable regions arise; with the decrease of beam length, the conditions of the damped coefficient arise instead. These conclusions can provide a reference for the robust design of parametricallyexcited linear resonant sensors.
基金the National Natural Science Foundation of China (10732030)
文摘The longitudinal dynamic flight stability of a bumblebee in forward flight is studied. The method of computational fluid dynamics is used to compute the aerodynamic derivatives and the techniques of eigenvalue and eigenvector analysis are employed for solving the equations of motion. The primary findings are as the following. The forward flight of the bumblebee is not dynamically stable due to the existence of one (or two) unstable or approximately neutrally stable natural modes of motion. At hovering to medium flight speed [flight speed Ue = (0-3.5)m s^-1; advance ratio J = 0-0.44], the flight is weakly unstable or approximately neutrally stable; at high speed (Ue = 4.5 m s^-1; J = 0.57), the flight becomes strongly unstable (initial disturbance double its value in only 3.5 wingbeats).
文摘In this paper, the general equations of dynamic stability for composite laminated plates are derived hyHamilton principle. These general equations can he used to consider those different factors that affect the dynamic stability of laminated plates. The factors are transverse shear deformation, initial imperfections, longitudinal and rotational inertia, and ply-angle of the fiber, etc. The solutions of the fundamental equations show that some important characteristics of the dynamic instability can only be got by the consideration and analysis of those factors
基金supported by the National Natural Science Foundation of China (10732030) and the 111 Project (B07009)
文摘In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model (which assumes that the frequency of wingbeat is sufficiently higher than that of the body motion, so that the flapping wings' degrees of freedom relative to the body can be dropped and the wings can be replaced by wingbeat-cycle-average forces and moments); the simulation solves the complete equations of motion coupled with the Navier-Stokes equations. Comparison between the theory and the simulation provides a test to the validity of the assumptions in the theory. One of the insects is a model dronefly which has relatively high wingbeat frequency (164 Hz) and the other is a model hawkmoth which has relatively low wingbeat frequency (26 Hz). The results show that the averaged model is valid for the hawkmoth as well as for the dronefly. Since the wingbeat frequency of the hawkmoth is relatively low (the characteristic times of the natural modes of motion of the body divided by wingbeat period are relatively large) compared with many other insects, that the theory based on the averaged model is valid for the hawkmoth means that it could be valid for many insects.