Since chemical processes are highly non-linear and multiscale,it is vital to deeply mine the multiscale coupling relationships embedded in the massive process data for the prediction and anomaly tracing of crucial pro...Since chemical processes are highly non-linear and multiscale,it is vital to deeply mine the multiscale coupling relationships embedded in the massive process data for the prediction and anomaly tracing of crucial process parameters and production indicators.While the integrated method of adaptive signal decomposition combined with time series models could effectively predict process variables,it does have limitations in capturing the high-frequency detail of the operation state when applied to complex chemical processes.In light of this,a novel Multiscale Multi-radius Multi-step Convolutional Neural Network(Msrt Net)is proposed for mining spatiotemporal multiscale information.First,the industrial data from the Fluid Catalytic Cracking(FCC)process decomposition using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)extract the multi-energy scale information of the feature subset.Then,convolution kernels with varying stride and padding structures are established to decouple the long-period operation process information encapsulated within the multi-energy scale data.Finally,a reconciliation network is trained to reconstruct the multiscale prediction results and obtain the final output.Msrt Net is initially assessed for its capability to untangle the spatiotemporal multiscale relationships among variables in the Tennessee Eastman Process(TEP).Subsequently,the performance of Msrt Net is evaluated in predicting product yield for a 2.80×10^(6) t/a FCC unit,taking diesel and gasoline yield as examples.In conclusion,Msrt Net can decouple and effectively extract spatiotemporal multiscale information from chemical process data and achieve a approximately reduction of 30%in prediction error compared to other time-series models.Furthermore,its robustness and transferability underscore its promising potential for broader applications.展开更多
Fluid catalytic cracking(FCC)is a vitally important refinery process.The fractionation,absorption,and stabilization system in the FCC process is a significant way to obtain key products,and its parameters will directl...Fluid catalytic cracking(FCC)is a vitally important refinery process.The fractionation,absorption,and stabilization system in the FCC process is a significant way to obtain key products,and its parameters will directly affect the quality of the products.In this work,using industrial data from an actual FCC process,a model of the FCC fractionation,absorption,and stabilization system was developed using process simulation software.The sequence quadratic program algorithm was then used to identify the parameters of each tower,increasing the accuracy of the simulation results.Next,using this improved model,a sensitivity analysis was performed to examine the effects of different operating conditions.The pattern-search method was then used to optimize the operating parameters of the system.The results showed that the optimized model has good prediction accuracy,and using the model,it was found that changing the operation parameters could result in a 1.84%improvement in economic benefits.As such,the developed model was demonstrated to be usefully applicable to the optimization of the process operation of an FCC fractionation,absorption,and stabilization system.展开更多
A new generic reaction in the form of PC_i→PC_m+[i,m]→PC_m+λi,m coke+surplusage has been proposed for describing the catalytic cracking behavior of petroleum narrow cuts or pseudo-components(PCs),where the rate con...A new generic reaction in the form of PC_i→PC_m+[i,m]→PC_m+λi,m coke+surplusage has been proposed for describing the catalytic cracking behavior of petroleum narrow cuts or pseudo-components(PCs),where the rate constant formula is derived from the transition state theory and the coking amount is correlated to the properties of the intermediate substance [i,m].In composing the cracking reaction network for feedstock and product oils,only the product PC m of the proposed generic reaction is used,which together with a criterion for excluding exothermic reactions,distinctly reduces the number of reactions in the network.With the proposed cracking reaction scheme coupled with special pseudo-components,a predictive one-dimensional steady state model for fluid catalytic cracking risers is formulated in the sense that for a given riser and given catalyst,the model parameters are independent of stock oils,product schemes and other operational conditions.The great correlating and predicting capability of the resulted model is tested with production data in different scenarios of four commercial risers.展开更多
A hydraulic power unit (HPU) is the driving "heart" of deep-sea working equipment. It is critical to predict its dynamic performances in deep-water before being immerged in the seawater, while the experimental tes...A hydraulic power unit (HPU) is the driving "heart" of deep-sea working equipment. It is critical to predict its dynamic performances in deep-water before being immerged in the seawater, while the experimental tests by simulating deep-sea environment have many disadvantages, such as expensive cost, long test cycles, and difficult to achieve low-temperature simulation, which is only used as a supplementary means for confirmatory experiment. This paper proposes a novel theoretical approach based on the linear varying parameters (LVP) modeling to foresee the dynamic performances of the driving unit. Firstly, based on the varying environment features, dynamic expressions of the compressibility and viscosity of hydranlic oil are derived to reveal the fluid performances changing. Secondly, models of hydraulic system and electrical system are accomplished respectively through studying the control process and energy transfer, and then LVP models of the pressure and flow rate control is obtained through the electro-hydraulic models integration. Thirdly, dynamic characteristics of HPU are obtained by the model simulating within bounded closed sets of varying parameters. Finally, the developed HPU is tested in a deep-sea imitating hull, and the experimental results are well consistent with the theoretical analysis outcomes, which clearly declare that the LVP modeling is a rational way to foresee dynamic performances of HPU. The research approach and model analysis results can be applied to the predictions of working properties and product designs for other deep-sea hydraulic pump.展开更多
Ensuring accurate parameter identification and diving motion prediction of marine crafts is essential for safe navigation,optimized operational efficiency,and the advancement of marine exploration.Addressing this,this...Ensuring accurate parameter identification and diving motion prediction of marine crafts is essential for safe navigation,optimized operational efficiency,and the advancement of marine exploration.Addressing this,this paper proposes an instrumental variable-based least squares(IVLS)algorithm.Firstly,aiming to balance complexity with accuracy,a decoupled diving model is constructed,incorporating nonlinear actuator characteristics,inertia coefficients,and damping coefficients.Secondly,a discrete parameter identification matrix is designed based on this dedicated model,and then a IVLS algorithm is innovatively derived to reject measurement noise.Furthermore,the stability of the proposed algorithm is validated from a probabilistic point of view,providing a solid theoretical foundation.Finally,performance evaluation is conducted using four depth control datasets obtained from a piston-driven profiling float in Qiandao Lake,with desired depths of 30 m,40 m,50 m,and 60 m.Based on the diving dynamics identification results,the IVLS algorithm consistently shows superior performance when compared to recursive weighted least squares algorithm and least squares support vector machine algorithm across all depths,as evidenced by lower average absolute error(AVGAE),root mean square error(RMSE),and maximum absolute error values and higher determination coefficient(R2).Specifically,for desired depth of 60 m,the IVLS algorithm achieved an AVGAE of 0.553 m and RMSE of 0.655 m,significantly outperforming LSSVM with AVGAE and RMSE values of 8.782 m and 11.117 m,respectively.Moreover,the IVLS algorithm demonstrates a remarkable generalization capability with R2 values consistently above 0.95,indicating its robustness in handling varied diving dynamics.展开更多
A novel distributed model predictive control scheme based on dynamic integrated system optimization and parameter estimation (DISOPE) was proposed for nonlinear cascade systems under network environment. Under the d...A novel distributed model predictive control scheme based on dynamic integrated system optimization and parameter estimation (DISOPE) was proposed for nonlinear cascade systems under network environment. Under the distributed control structure, online optimization of the cascade system was composed of several cascaded agents that can cooperate and exchange information via network communication. By iterating on modified distributed linear optimal control problems on the basis of estimating parameters at every iteration the correct optimal control action of the nonlinear model predictive control problem of the cascade system could be obtained, assuming that the algorithm was convergent. This approach avoids solving the complex nonlinear optimization problem and significantly reduces the computational burden. The simulation results of the fossil fuel power unit are illustrated to verify the effectiveness and practicability of the proposed algorithm.展开更多
A mathematical model has been developed for the simulation of gas-particle flow and fluid catalytic cracking in downer reactors. The model takes into account both cracking reaction and flow behavior through a four-lum...A mathematical model has been developed for the simulation of gas-particle flow and fluid catalytic cracking in downer reactors. The model takes into account both cracking reaction and flow behavior through a four-lump reaction kinetics coupled with two-phase turbulent flow. The prediction results show that the relatively large change of gas velocity affects directly the axial distribution of solids velocity and void fraction, which significantly interact with the chemical reaction. Furthermore, model simulations are carried out to determine the effects of such parameters on product yields, as bed diameter, reaction temperature and the ratio of catalyst to oil, which are helpful for optimizing the yields of desired products. The model equations are coded and solved on CFX4.4.展开更多
Unconventional reservoirs are normally characterized by dual porous media, which has both multi-scalepore and fracture structures, such as low permeability or tight oil reservoirs. The seepage characteristicsof such r...Unconventional reservoirs are normally characterized by dual porous media, which has both multi-scalepore and fracture structures, such as low permeability or tight oil reservoirs. The seepage characteristicsof such reservoirs is mainly determined by micro-fractures, but conventional laboratory experimentalmethods are difficult to measure it, which is attribute to the dynamic cracking of these micro-fractures.The emerging digital core technology in recent years can solve this problem by developing an accuratepore network model and a rational simulation approach. In this study, a novel pore-fracture dualnetwork model was established based on percolation theory. Fluid flow in the pore of two scales, microfracture and matrix pore, were considered, also with the impact of micro-fracture opening and closingduring flow. Some seepage characteristic parameters, such as fluid saturations, capillary pressure, relative permeabilities, displacement efficiency in different flow stage, can be predicted by proposedcalculating method. Through these work, seepage characteristics of dual porous media can be achieved.展开更多
Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,whic...Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,which are augmented as state variables.Based on the observability of the singular system,this paper presents a simplified observability criterion under certain conditions for unknown inputs and uncertain model parameters.When the observability is satisfied,the unknown inputs and the uncertain model parameters are estimated online by the soft sensor using augmented nonlinear singular state observer.The riser reactor of fluid catalytic cracking unit is used as an example for analysis and simulation.With the catalyst circulation rate as the only unknown input without model error,one temperature sensor at the riser reactor outlet will ensure the correct estimation for the catalyst circulation rate.However,when uncertain model parameters also exist,additional temperature sensors must be used to ensure correct estimation for unknown inputs and uncertain model parameters of chemical processes.展开更多
Experiences on earthquake prediction accumulated by the Chinese scientists in the last 20 years were synthetically analyzed. A prediction program was set up to demonstrate the development of the georesistivity anoma...Experiences on earthquake prediction accumulated by the Chinese scientists in the last 20 years were synthetically analyzed. A prediction program was set up to demonstrate the development of the georesistivity anomaly by using of the dynamic image, accordingly the earthquake prone area can be recognized. By revising the DYBS Ⅰ, which was developed in 1989, and adding some latest achievements, we worked out a software on earthquake prediction by the geoelectric method the DYBS Ⅱ. Some new feature of DYBS Ⅱ are: the anomalous area may be determined by the space distribution and its time variation of geoelectric parameters; The dynamic process that is associated with the development of earthquake anomaly can be displayed on the computer screen; Technique for the prediction of an impending earthquake was included too. Some results of the Tangshan earthquake were presented at the end of this paper.展开更多
To effectively estimate the unknown aerodynamic parameters from the aircraft’s flight data,this paper proposes a novel aerodynamic parameter estimation method incorporating a stacked Long Short-Term Memory(LSTM)netwo...To effectively estimate the unknown aerodynamic parameters from the aircraft’s flight data,this paper proposes a novel aerodynamic parameter estimation method incorporating a stacked Long Short-Term Memory(LSTM)network model and the Levenberg-Marquardt(LM)method.The stacked LSTM network model was designed to realize the aircraft dynamics modeling by utilizing a frame of nonlinear functional mapping based entirely on the measured input-output data of the aircraft system without requiring explicit postulation of the dynamics.The LM method combines the already-trained LSTM network model to optimize the unknown aerodynamic parameters.The proposed method is applied by using the real flight data,generated by ATTAS aircraft and a bio-inspired morphing Unmanned Aerial Vehicle(UAV).The investigation reveals that for the two different flight data,the designed stacked LSTM network structure can maintain the efficacy of the network prediction capability only by appropriately adjusting the dropout rates of its hidden layers without changing other network parameters(i.e.,the initial weights,initial biases,number of hidden cells,time-steps,learning rate,and number of training iterations).Besides,the proposed method’s effectiveness and potential are demonstrated by comparing the estimated results of the ATTAS aircraft or the bio-inspired morphing UAV with the corresponding reference values or wind-tunnel results.展开更多
文摘Since chemical processes are highly non-linear and multiscale,it is vital to deeply mine the multiscale coupling relationships embedded in the massive process data for the prediction and anomaly tracing of crucial process parameters and production indicators.While the integrated method of adaptive signal decomposition combined with time series models could effectively predict process variables,it does have limitations in capturing the high-frequency detail of the operation state when applied to complex chemical processes.In light of this,a novel Multiscale Multi-radius Multi-step Convolutional Neural Network(Msrt Net)is proposed for mining spatiotemporal multiscale information.First,the industrial data from the Fluid Catalytic Cracking(FCC)process decomposition using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)extract the multi-energy scale information of the feature subset.Then,convolution kernels with varying stride and padding structures are established to decouple the long-period operation process information encapsulated within the multi-energy scale data.Finally,a reconciliation network is trained to reconstruct the multiscale prediction results and obtain the final output.Msrt Net is initially assessed for its capability to untangle the spatiotemporal multiscale relationships among variables in the Tennessee Eastman Process(TEP).Subsequently,the performance of Msrt Net is evaluated in predicting product yield for a 2.80×10^(6) t/a FCC unit,taking diesel and gasoline yield as examples.In conclusion,Msrt Net can decouple and effectively extract spatiotemporal multiscale information from chemical process data and achieve a approximately reduction of 30%in prediction error compared to other time-series models.Furthermore,its robustness and transferability underscore its promising potential for broader applications.
基金supported by the National Key Research&Development Program-Intergovernmental International Science and Technology Innovation Cooperation Project (Grant No.2021YFE0112800)National Natural Science Foundation of China (Grant Nos.61973124+2 种基金61873093)the SINOPEC Research Program (Grant No.119030-2)Shanghai AI Lab
文摘Fluid catalytic cracking(FCC)is a vitally important refinery process.The fractionation,absorption,and stabilization system in the FCC process is a significant way to obtain key products,and its parameters will directly affect the quality of the products.In this work,using industrial data from an actual FCC process,a model of the FCC fractionation,absorption,and stabilization system was developed using process simulation software.The sequence quadratic program algorithm was then used to identify the parameters of each tower,increasing the accuracy of the simulation results.Next,using this improved model,a sensitivity analysis was performed to examine the effects of different operating conditions.The pattern-search method was then used to optimize the operating parameters of the system.The results showed that the optimized model has good prediction accuracy,and using the model,it was found that changing the operation parameters could result in a 1.84%improvement in economic benefits.As such,the developed model was demonstrated to be usefully applicable to the optimization of the process operation of an FCC fractionation,absorption,and stabilization system.
基金Supported by the National Natural Science Foundation of China(21676012)the Fundamental Research Funds for the Central Universities(Project YS1404)the National High Technology Research and Development Program of China(2007AA04Z191)
文摘A new generic reaction in the form of PC_i→PC_m+[i,m]→PC_m+λi,m coke+surplusage has been proposed for describing the catalytic cracking behavior of petroleum narrow cuts or pseudo-components(PCs),where the rate constant formula is derived from the transition state theory and the coking amount is correlated to the properties of the intermediate substance [i,m].In composing the cracking reaction network for feedstock and product oils,only the product PC m of the proposed generic reaction is used,which together with a criterion for excluding exothermic reactions,distinctly reduces the number of reactions in the network.With the proposed cracking reaction scheme coupled with special pseudo-components,a predictive one-dimensional steady state model for fluid catalytic cracking risers is formulated in the sense that for a given riser and given catalyst,the model parameters are independent of stock oils,product schemes and other operational conditions.The great correlating and predicting capability of the resulted model is tested with production data in different scenarios of four commercial risers.
基金supported by the National High Technology Research and Development Program of China (863 Program,Grant Nos. 2006AA09Z226 and 2012AA091104)the Special Fund for Basic Scientific Research of Central Colleges,Chang’an University (Grant No. CHD2011JC151)
文摘A hydraulic power unit (HPU) is the driving "heart" of deep-sea working equipment. It is critical to predict its dynamic performances in deep-water before being immerged in the seawater, while the experimental tests by simulating deep-sea environment have many disadvantages, such as expensive cost, long test cycles, and difficult to achieve low-temperature simulation, which is only used as a supplementary means for confirmatory experiment. This paper proposes a novel theoretical approach based on the linear varying parameters (LVP) modeling to foresee the dynamic performances of the driving unit. Firstly, based on the varying environment features, dynamic expressions of the compressibility and viscosity of hydranlic oil are derived to reveal the fluid performances changing. Secondly, models of hydraulic system and electrical system are accomplished respectively through studying the control process and energy transfer, and then LVP models of the pressure and flow rate control is obtained through the electro-hydraulic models integration. Thirdly, dynamic characteristics of HPU are obtained by the model simulating within bounded closed sets of varying parameters. Finally, the developed HPU is tested in a deep-sea imitating hull, and the experimental results are well consistent with the theoretical analysis outcomes, which clearly declare that the LVP modeling is a rational way to foresee dynamic performances of HPU. The research approach and model analysis results can be applied to the predictions of working properties and product designs for other deep-sea hydraulic pump.
基金supported in part by the National Natural Sci-ence Foundation of China under Grant 42376187in part by the National Key R&D Program of China under Grant 2023YFC2812800,in part by the Natural Science Foundation of Shanghai under Grant 22ZR1434600+2 种基金in part by the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University under Grant SL2022MS016in part by the Shanghai Jiao Tong University 2030 Initiative under Grant WH510244001in part by the Shanghai Underwater Robot En-gineering Technology Innovation Center under Grant 21DZ2221600.
文摘Ensuring accurate parameter identification and diving motion prediction of marine crafts is essential for safe navigation,optimized operational efficiency,and the advancement of marine exploration.Addressing this,this paper proposes an instrumental variable-based least squares(IVLS)algorithm.Firstly,aiming to balance complexity with accuracy,a decoupled diving model is constructed,incorporating nonlinear actuator characteristics,inertia coefficients,and damping coefficients.Secondly,a discrete parameter identification matrix is designed based on this dedicated model,and then a IVLS algorithm is innovatively derived to reject measurement noise.Furthermore,the stability of the proposed algorithm is validated from a probabilistic point of view,providing a solid theoretical foundation.Finally,performance evaluation is conducted using four depth control datasets obtained from a piston-driven profiling float in Qiandao Lake,with desired depths of 30 m,40 m,50 m,and 60 m.Based on the diving dynamics identification results,the IVLS algorithm consistently shows superior performance when compared to recursive weighted least squares algorithm and least squares support vector machine algorithm across all depths,as evidenced by lower average absolute error(AVGAE),root mean square error(RMSE),and maximum absolute error values and higher determination coefficient(R2).Specifically,for desired depth of 60 m,the IVLS algorithm achieved an AVGAE of 0.553 m and RMSE of 0.655 m,significantly outperforming LSSVM with AVGAE and RMSE values of 8.782 m and 11.117 m,respectively.Moreover,the IVLS algorithm demonstrates a remarkable generalization capability with R2 values consistently above 0.95,indicating its robustness in handling varied diving dynamics.
基金This work was supportedbytheNationalNaturalScienceFoundationofChina(No.60474051),theProgramforNewCenturyExcellentTalentsinUniversityofChina(NCET),andtheSpecializedResearchFundfortheDoctoralProgramofHigherEducationofChina(No.20020248028).
文摘A novel distributed model predictive control scheme based on dynamic integrated system optimization and parameter estimation (DISOPE) was proposed for nonlinear cascade systems under network environment. Under the distributed control structure, online optimization of the cascade system was composed of several cascaded agents that can cooperate and exchange information via network communication. By iterating on modified distributed linear optimal control problems on the basis of estimating parameters at every iteration the correct optimal control action of the nonlinear model predictive control problem of the cascade system could be obtained, assuming that the algorithm was convergent. This approach avoids solving the complex nonlinear optimization problem and significantly reduces the computational burden. The simulation results of the fossil fuel power unit are illustrated to verify the effectiveness and practicability of the proposed algorithm.
基金the Natura Science Foundation of China under contract number:20176024
文摘A mathematical model has been developed for the simulation of gas-particle flow and fluid catalytic cracking in downer reactors. The model takes into account both cracking reaction and flow behavior through a four-lump reaction kinetics coupled with two-phase turbulent flow. The prediction results show that the relatively large change of gas velocity affects directly the axial distribution of solids velocity and void fraction, which significantly interact with the chemical reaction. Furthermore, model simulations are carried out to determine the effects of such parameters on product yields, as bed diameter, reaction temperature and the ratio of catalyst to oil, which are helpful for optimizing the yields of desired products. The model equations are coded and solved on CFX4.4.
基金The writers greatly appreciate the financial support of the Major Special Project of PetroChina Co Ltd.(2017E-0406)the National Science and Technology Major Project during the 13th Five-year Plan Period(2016ZX05010-00504).
文摘Unconventional reservoirs are normally characterized by dual porous media, which has both multi-scalepore and fracture structures, such as low permeability or tight oil reservoirs. The seepage characteristicsof such reservoirs is mainly determined by micro-fractures, but conventional laboratory experimentalmethods are difficult to measure it, which is attribute to the dynamic cracking of these micro-fractures.The emerging digital core technology in recent years can solve this problem by developing an accuratepore network model and a rational simulation approach. In this study, a novel pore-fracture dualnetwork model was established based on percolation theory. Fluid flow in the pore of two scales, microfracture and matrix pore, were considered, also with the impact of micro-fracture opening and closingduring flow. Some seepage characteristic parameters, such as fluid saturations, capillary pressure, relative permeabilities, displacement efficiency in different flow stage, can be predicted by proposedcalculating method. Through these work, seepage characteristics of dual porous media can be achieved.
基金Supported by the National Natural Science Foundation of China (21006127), the National Basic Research Program of China (2012CB720500) and the Science Foundation of China University of Petroleum, Beijing (KYJJ2012-05-28).
文摘Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,which are augmented as state variables.Based on the observability of the singular system,this paper presents a simplified observability criterion under certain conditions for unknown inputs and uncertain model parameters.When the observability is satisfied,the unknown inputs and the uncertain model parameters are estimated online by the soft sensor using augmented nonlinear singular state observer.The riser reactor of fluid catalytic cracking unit is used as an example for analysis and simulation.With the catalyst circulation rate as the only unknown input without model error,one temperature sensor at the riser reactor outlet will ensure the correct estimation for the catalyst circulation rate.However,when uncertain model parameters also exist,additional temperature sensors must be used to ensure correct estimation for unknown inputs and uncertain model parameters of chemical processes.
文摘Experiences on earthquake prediction accumulated by the Chinese scientists in the last 20 years were synthetically analyzed. A prediction program was set up to demonstrate the development of the georesistivity anomaly by using of the dynamic image, accordingly the earthquake prone area can be recognized. By revising the DYBS Ⅰ, which was developed in 1989, and adding some latest achievements, we worked out a software on earthquake prediction by the geoelectric method the DYBS Ⅱ. Some new feature of DYBS Ⅱ are: the anomalous area may be determined by the space distribution and its time variation of geoelectric parameters; The dynamic process that is associated with the development of earthquake anomaly can be displayed on the computer screen; Technique for the prediction of an impending earthquake was included too. Some results of the Tangshan earthquake were presented at the end of this paper.
基金co-supported by the National Natural Science Foundation of China(No.52192633)the Natural Science Foundation of Shaanxi Province,China(No.2022JC-03)the Fundamental Research Funds for the Central Universities,China(No.XJSJ23164)。
文摘To effectively estimate the unknown aerodynamic parameters from the aircraft’s flight data,this paper proposes a novel aerodynamic parameter estimation method incorporating a stacked Long Short-Term Memory(LSTM)network model and the Levenberg-Marquardt(LM)method.The stacked LSTM network model was designed to realize the aircraft dynamics modeling by utilizing a frame of nonlinear functional mapping based entirely on the measured input-output data of the aircraft system without requiring explicit postulation of the dynamics.The LM method combines the already-trained LSTM network model to optimize the unknown aerodynamic parameters.The proposed method is applied by using the real flight data,generated by ATTAS aircraft and a bio-inspired morphing Unmanned Aerial Vehicle(UAV).The investigation reveals that for the two different flight data,the designed stacked LSTM network structure can maintain the efficacy of the network prediction capability only by appropriately adjusting the dropout rates of its hidden layers without changing other network parameters(i.e.,the initial weights,initial biases,number of hidden cells,time-steps,learning rate,and number of training iterations).Besides,the proposed method’s effectiveness and potential are demonstrated by comparing the estimated results of the ATTAS aircraft or the bio-inspired morphing UAV with the corresponding reference values or wind-tunnel results.