Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,...Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,accurate forecasting of Es layers is crucial for ensuring the precision and dependability of navigation satellite systems.In this study,we present Es predictions made by an empirical model and by a deep learning model,and analyze their differences comprehensively by comparing the model predictions to satellite RO measurements and ground-based ionosonde observations.The deep learning model exhibited significantly better performance,as indicated by its high coefficient of correlation(r=0.87)with RO observations and predictions,than did the empirical model(r=0.53).This study highlights the importance of integrating artificial intelligence technology into ionosphere modelling generally,and into predicting Es layer occurrences and characteristics,in particular.展开更多
基金supported by the Project of Stable Support for Youth Team in Basic Research Field,CAS(grant No.YSBR-018)the National Natural Science Foundation of China(grant Nos.42188101,42130204)+4 种基金the B-type Strategic Priority Program of CAS(grant no.XDB41000000)the National Natural Science Foundation of China(NSFC)Distinguished Overseas Young Talents Program,Innovation Program for Quantum Science and Technology(2021ZD0300301)the Open Research Project of Large Research Infrastructures of CAS-“Study on the interaction between low/mid-latitude atmosphere and ionosphere based on the Chinese Meridian Project”.The project was supported also by the National Key Laboratory of Deep Space Exploration(Grant No.NKLDSE2023A002)the Open Fund of Anhui Provincial Key Laboratory of Intelligent Underground Detection(Grant No.APKLIUD23KF01)the China National Space Administration(CNSA)pre-research Project on Civil Aerospace Technologies No.D010305,D010301.
文摘Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,accurate forecasting of Es layers is crucial for ensuring the precision and dependability of navigation satellite systems.In this study,we present Es predictions made by an empirical model and by a deep learning model,and analyze their differences comprehensively by comparing the model predictions to satellite RO measurements and ground-based ionosonde observations.The deep learning model exhibited significantly better performance,as indicated by its high coefficient of correlation(r=0.87)with RO observations and predictions,than did the empirical model(r=0.53).This study highlights the importance of integrating artificial intelligence technology into ionosphere modelling generally,and into predicting Es layer occurrences and characteristics,in particular.