Rapidly expanding studies investigate the effects of e-commerce on company operations in the retail market.However,the interaction between agri-food e-commerce(AEC)and the traditional agri-food wholesale industry(AWI)...Rapidly expanding studies investigate the effects of e-commerce on company operations in the retail market.However,the interaction between agri-food e-commerce(AEC)and the traditional agri-food wholesale industry(AWI)has not received enough attention in the existing literature.Based on the provincial panel data from 2013 to 2020 in China,this paper examines the effect of AEC on AWI,comprising three dimensions:digitalization(DIGITAL),agrifood e-commerce infrastructure and supporting services(AECI),and agri-food e-commerce economy(AECE).First,AWI and AEC are measured using an entropy-based combination of indicators.The results indicate that for China as a whole,AWI has remained practically unchanged,whereas AEC exhibits a significant rising trend.Second,the findings of the fixed-effect regression reveal that DIGITAL and AECE tend to raise AWI,whereas AECI negatively affects AWI.Third,threshold regression results indicate that AECI tends to diminish AWI with three-stage inhibitory intensity,which manifests as a first increase and then a drop in the inhibition degree.These results suggest that with the introduction of e-commerce for agricultural product circulation,digital development will have catfish effects that tend to stimulate the vitality of the conventional wholesale industry and promote technical progress.Furthermore,the traditional wholesale industry benefits financially from e-commerce even while it diverts part of the traditional wholesale circulation for agricultural products.展开更多
With the rapid growth of the global digital economy, cross-border e-commerce, as an emerging form of trade, has gradually become a powerful engine to promote the development of global trade. BRICS is an important forc...With the rapid growth of the global digital economy, cross-border e-commerce, as an emerging form of trade, has gradually become a powerful engine to promote the development of global trade. BRICS is an important force in the global economy, and the progress of the BRICS countries' trade facilitation level has an important impact on the global trade environment. This paper conducts an in-depth study of the dynamic changes in BRICS trade facilitation from 2013 to 2022, and uses an extended gravity model to analyze the specific impact of this change on China's exports using cross-border e-commerce. The results show that although the BRICS countries have made some progress in trade facilitation, the overall level still needs to be improved, and there are obvious differences among member countries. However, the improvement of trade facilitation among BRICS countries has undoubtedly brought significant positive effects to China's exports using cross-border e-commerce.展开更多
This research introduces a novel approach to improve and optimize the predictive capacity of consumer purchase behaviors on e-commerce platforms. This study presented an introduction to the fundamental concepts of the...This research introduces a novel approach to improve and optimize the predictive capacity of consumer purchase behaviors on e-commerce platforms. This study presented an introduction to the fundamental concepts of the logistic regression algorithm. In addition, it analyzed user data obtained from an e-commerce platform. The original data were preprocessed, and a consumer purchase prediction model was developed for the e-commerce platform using the logistic regression method. The comparison study used the classic random forest approach, further enhanced by including the K-fold cross-validation method. Evaluation of the accuracy of the model’s classification was conducted using performance indicators that included the accuracy rate, the precision rate, the recall rate, and the F1 score. A visual examination determined the significance of the findings. The findings suggest that employing the logistic regression algorithm to forecast customer purchase behaviors on e-commerce platforms can improve the efficacy of the approach and yield more accurate predictions. This study serves as a valuable resource for improving the precision of forecasting customers’ purchase behaviors on e-commerce platforms. It has significant practical implications for optimizing the operational efficiency of e-commerce platforms.展开更多
Analyze the compatibility between cosmetics and live streaming e-commerce from its own nature,marketing means and supply chain characteristics.According to the prominent problems,sort out the relationship between all ...Analyze the compatibility between cosmetics and live streaming e-commerce from its own nature,marketing means and supply chain characteristics.According to the prominent problems,sort out the relationship between all parties in the cosmetics live e-commerce industry chain.Combined with the latest regulatory policies of live streaming e-commerce and cosmetics,the responsibilities of different subjects in cosmetics live streaming e-commerce are summarized,and relevant suggestions and countermeasures are put forward for the standardization and development of live streaming e-commerce.Cosmetics brand owners are the first responsible persons for product quality.Anchors,as a mixed identity between intermediary,advertising spokesperson and operator,should bear stricter joint and several liability when recommending products related to consumers’health.If anchors fail to clearly identify themselves in the recommendation process,thus causing consumers to mistake them for the operator of the cosmetics,they should assume the obligations of the operator.展开更多
In the context of China’s ongoing efforts to promote countryside revitalization and facilitate domestic economic circulation,it is of great significance to reduce the consumption disparity among rural households and ...In the context of China’s ongoing efforts to promote countryside revitalization and facilitate domestic economic circulation,it is of great significance to reduce the consumption disparity among rural households and unleash the consumption potential in the countryside.Based on data from China Family Panel Studies,this paper adopts a staggered difference-in-differences method to assess the impact of the e-commerce to enter rural areas on the consumption disparity among rural households.Findings:the comprehensive demonstration work of promoting e-commerce to enter rural areas has reduced the consumption disparity among rural households through the following mechanisms.Firstly,this policy initiative has mitigated the consumption-inhibiting effect on rural household consumption due to the local market size and external market accessibility by promoting the distribution of consumer goods to villages.Secondly,this policy initiative has also increased the agricultural income of rural households and reduced their consumption disparity by distributing farm produce to cities and enhancing the agricultural income of rural households.Moreover,the work is characterized by inclusive growth and is not susceptible to the“elite capture”phenomenon.展开更多
E-commerce live broadcast has an important influence on consumers’purchase intention.The three dimensions of live broadcast content in the broadcast room are the number of comments,product quality,and live content as...E-commerce live broadcast has an important influence on consumers’purchase intention.The three dimensions of live broadcast content in the broadcast room are the number of comments,product quality,and live content as independent variables.A theoretical model is constructed with perceived value and risk as intermediaries and the consumers’purchase intention as the dependent variable,and corresponding hypotheses are put forward.We designed the scale,collected relevant data,and tested the model hypothesis using Statistical Package for Social Sciences(SPSS)and Analysis of Moment Structure(AMOS)software.The study found that the number of comments and product quality had a significant impact on perceived value,perceived risk,and consumers’purchase intention.From this conclusion,it is suggested that businesses should control the number of comments,strengthen the product quality of comments,and distinguish the repetition degree of the content of live broadcasts.展开更多
The development of rural e-commerce is becoming an important driver for the transformation of China’s rural economy,and with the rapid development of information technology and the upgrading of the agricultural indus...The development of rural e-commerce is becoming an important driver for the transformation of China’s rural economy,and with the rapid development of information technology and the upgrading of the agricultural industry,rural e-commerce is showing a vigorous momentum of development.Traditionally,agricultural products are mainly sold through traditional farmers’markets,which are subjected to geography and channel limitations,resulting in inefficient circulation of agricultural products.This paper analyzes the definition,the status quo,as well as the influencing factors of rural e-commerce development.On this basis,countermeasures for the advancement of rural e-commerce development are put forward.展开更多
With the rapid development of science and technology,the face of human society has undergone great changes;with the emergence of the Internet era,all kinds of educational technology,equipment,and software in vocationa...With the rapid development of science and technology,the face of human society has undergone great changes;with the emergence of the Internet era,all kinds of educational technology,equipment,and software in vocational colleges have been widely used to carry out education and teaching,and has achieved remarkable results.Based on this,colleges and universities’electronic commerce(e-commerce)professional teachers should try to rely on the Internet to build information teaching classrooms,introduce advanced methods to build efficient classrooms by integrating teaching resources,and optimize the top-level design,so as to activate the classroom atmosphere,mobilize students’emotions,make them immersed in the teaching of electronic commerce courses.In view of this,this paper combines the existing theory and experience,first analyzes the dilemma faced by the current teaching of e-commerce in vocational colleges,then discusses the practical significance of teaching reform based on the Internet era,and lastly puts forward the specific practice path.展开更多
This article takes the female community platform“Little Red Book”as an example to explore the optimization and innovation of mobile community e-commerce operation mode under Artificial Intelligence(AI)empowerment.Fi...This article takes the female community platform“Little Red Book”as an example to explore the optimization and innovation of mobile community e-commerce operation mode under Artificial Intelligence(AI)empowerment.Firstly,the relevant concepts were defined,and then the unique attributes of mobile community e-commerce were analyzed.As a typical representative of mobile community e-commerce,Little Red Book introduces the background and characteristics of its platform,analyzes its mobile community operation mode,and focuses on exploring how to establish a mobile community e-commerce platform and effective operation mode under the empowerment of AI technology,to provide some reference and inspiration for the development and operation of Little Red Book and other e-commerce platform enterprises.展开更多
The intermediate link compression characteristics of e-commerce express logistics ne tworks influence the tradition al mode of circulation of goods and economic organization,and alter the city spatial pattern.Based on...The intermediate link compression characteristics of e-commerce express logistics ne tworks influence the tradition al mode of circulation of goods and economic organization,and alter the city spatial pattern.Based on the theory of space of flows,this study adopts China Smart Logistics Network relational data to build China's e-commerce express logistics network and explore its spatial structure characteristics through social network analysis(SNA),the PageRank technique,and geospatial methods.The results are as follows:the network density is 0.9270,which is close to 1;hence,indicating that e-commerce express logistics lines between Chinese cities are nearly complete and they form a typical network structure,thereby eliminating fragmented spaces.Moreover,the average minimum number of edges is 1.1375,which indicates that the network has a small world effect and thus has a high flow efficiency of logistics elements.A significant hierarchical diffusion effect was observed in dominant flows with the highest edge weights.A diamond-structured network was formed with Shanghai,Guangzhou,Chongqing,and Beijing as the four core nodes.Other node cities with a large logistics scale and importance in the network are mainly located in the 19 city agglomerations of China,revealing the fact that the development of city agglomerations is essential for promoting the separation of experience space and changing the urban spatial pattern.This study enriches the theory of urban networks,reveals the flow laws of modern logistics elements,and encourages coordinated development of urban logistics.展开更多
Most traditional trust computing models in E-commerce do not take the transaction frequency among participating entities into consideration,which makes it easy for one party of the transaction to obtain a high trust v...Most traditional trust computing models in E-commerce do not take the transaction frequency among participating entities into consideration,which makes it easy for one party of the transaction to obtain a high trust value in a short time,and brings many disadvantages,uncertainties and even attacks.To solve this problem,a transaction frequency based trust is proposed in this study.The proposed method is composed of two parts.The first part is built on the classic Bayes analysis based trust modelswhich are ease of computing for the E-commerce system.The second part is the transaction frequency module which can mitigate the potential insecurity caused by one participating entity gaining trust in a short time.Simulations show that the proposed method can effectively mitigate the self-promoting attacks so as to maintain the function of E-commerce system.展开更多
The rapidly escalating sophistication of e-commerce fraud in recent years has led to an increasing reliance on fraud detection methods based on machine learning.However,fraud detection methods based on conventional ma...The rapidly escalating sophistication of e-commerce fraud in recent years has led to an increasing reliance on fraud detection methods based on machine learning.However,fraud detection methods based on conventional machine learning approaches suffer from several problems,including an excessively high number of network parameters,which decreases the efficiency and increases the difficulty of training the network,while simultaneously leading to network overfitting.In addition,the sparsity of positive fraud incidents relative to the overwhelming proportion of negative incidents leads to detection failures in trained networks.The present work addresses these issues by proposing a convolutional neural network(CNN)framework for detecting ecommerce fraud,where network training is conducted using historical market transaction data.The number of network parameters reduces via the local perception field and weight sharing inherent in the CNN framework.In addition,this deep learning framework enables the use of an algorithmiclevel approach to address dataset imbalance by focusing the CNN model on minority data classes.The proposed CNN model is trained and tested using a large public e-commerce service dataset from 2018,and the test results demonstrate that the model provides higher fraud prediction accuracy than existing state-of-the-art methods.展开更多
Information and communication technologies are spreading rapidly due to their fast proliferation in many fields.The number of Internet users has led to a spike in cyber-attack incidents.E-commerce applications,such as...Information and communication technologies are spreading rapidly due to their fast proliferation in many fields.The number of Internet users has led to a spike in cyber-attack incidents.E-commerce applications,such as online banking,marketing,trading,and other online businesses,play an integral role in our lives.Network Intrusion Detection System(NIDS)is essential to protect the network from unauthorized access and against other cyber-attacks.The existing NIDS systems are based on the Backward Oracle Matching(BOM)algorithm,which minimizes the false alarm rate and causes of high packet drop ratio.This paper discussed the existing NIDS systems and different used pattern-matching techniques regarding their weaknesses and limitations.To address the existing system issues,this paper proposes an enhanced version of the BOM algorithm by using multiple pattern-matching methods for the NIDS system to improve the network performance.The proposed solution is tested in simulation with existing solutions using the Snort and NSL-KDD datasets.The experimental results indicated that the proposed solution performed better than the existing solutions and achieved a 5.17%detection rate and a 0.22%lower false alarm rate than the existing solution.展开更多
Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexi...Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexity,leading to practical problems in traffic identification data analytics.Since the original Dung Beetle Optimizer(DBO)algorithm,Grey Wolf Optimization(GWO)algorithm,Whale Optimization Algorithm(WOA),and Particle Swarm Optimization(PSO)algorithm have the shortcomings of slow convergence and easily fall into the local optimal solution,an Improved Dung Beetle Optimizer(IDBO)algorithm is proposed for network traffic identification.Firstly,the Sobol sequence is utilized to initialize the dung beetle population,laying the foundation for finding the global optimal solution.Next,an integration of levy flight and golden sine strategy is suggested to give dung beetles a greater probability of exploring unvisited areas,escaping from the local optimal solution,and converging more effectively towards a global optimal solution.Finally,an adaptive weight factor is utilized to enhance the search capabilities of the original DBO algorithm and accelerate convergence.With the improvements above,the proposed IDBO algorithm is then applied to traffic identification data analytics and feature selection,as so to find the optimal subset for K-Nearest Neighbor(KNN)classification.The simulation experiments use the CICIDS2017 dataset to verify the effectiveness of the proposed IDBO algorithm and compare it with the original DBO,GWO,WOA,and PSO algorithms.The experimental results show that,compared with other algorithms,the accuracy and recall are improved by 1.53%and 0.88%in binary classification,and the Distributed Denial of Service(DDoS)class identification is the most effective in multi-classification,with an improvement of 5.80%and 0.33%for accuracy and recall,respectively.Therefore,the proposed IDBO algorithm is effective in increasing the efficiency of traffic identification and solving the problem of the original DBO algorithm that converges slowly and falls into the local optimal solution when dealing with high-dimensional data analytics and feature selection for network traffic identification.展开更多
The article takes China’s e-commerce as the research object.Starting from the macro level of e-commerce development and taking the rapid rise of“Pinduoduo”as an example,it discusses the“traffic dilemma”and its in...The article takes China’s e-commerce as the research object.Starting from the macro level of e-commerce development and taking the rapid rise of“Pinduoduo”as an example,it discusses the“traffic dilemma”and its influence in the traditional e-commerce platform.This discovers the internal mechanism of mobile e-commerce to solve the problem of traffic distribution mechanism by socialization.After that,this study compares the difference between traditional e-commerce and social-commerce systematically,and concludes that traditional e-commerce platform is a necessary process of the development of social-commerce.Socialization is an important trend of the development of traditional e-commerce and social-commerce will promote the realization of C2B model.展开更多
Urban traffic control is a multifaceted and demanding task that necessitates extensive decision-making to ensure the safety and efficiency of urban transportation systems.Traditional approaches require traffic signal ...Urban traffic control is a multifaceted and demanding task that necessitates extensive decision-making to ensure the safety and efficiency of urban transportation systems.Traditional approaches require traffic signal professionals to manually intervene on traffic control devices at the intersection level,utilizing their knowledge and expertise.However,this process is cumbersome,labor-intensive,and cannot be applied on a large network scale.Recent studies have begun to explore the applicability of recommendation system for urban traffic control,which offer increased control efficiency and scalability.Such a decision recommendation system is complex,with various interdependent components,but a systematic literature review has not yet been conducted.In this work,we present an up-to-date survey that elucidates all the detailed components of a recommendation system for urban traffic control,demonstrates the utility and efficacy of such a system in the real world using data and knowledgedriven approaches,and discusses the current challenges and potential future directions of this field.展开更多
Traffic prediction already plays a significant role in applications like traffic planning and urban management,but it is still difficult to capture the highly non-linear and complicated spatiotemporal correlations of ...Traffic prediction already plays a significant role in applications like traffic planning and urban management,but it is still difficult to capture the highly non-linear and complicated spatiotemporal correlations of traffic data.As well as to fulfil both long-termand short-termprediction objectives,a better representation of the temporal dependency and global spatial correlation of traffic data is needed.In order to do this,the Spatiotemporal Graph Neural Network(S-GNN)is proposed in this research as amethod for traffic prediction.The S-GNN simultaneously accepts various traffic data as inputs and investigates the non-linear correlations between the variables.In terms of modelling,the road network is initially represented as a spatiotemporal directed graph,with the features of the samples at the time step being captured by a convolution module.In order to assign varying attention weights to various adjacent area nodes of the target node,the adjacent areas information of nodes in the road network is then aggregated using a graph network.The data is output using a fully connected layer at the end.The findings show that S-GNN can improve short-and long-term traffic prediction accuracy to a greater extent;in comparison to the control model,the RMSE of S-GNN is reduced by about 0.571 to 9.288 and the MAE(Mean Absolute Error)by about 0.314 to 7.678.The experimental results on two real datasets,Pe MSD7(M)and PEMS-BAY,also support this claim.展开更多
Encrypted traffic plays a crucial role in safeguarding network security and user privacy.However,encrypting malicious traffic can lead to numerous security issues,making the effective classification of encrypted traff...Encrypted traffic plays a crucial role in safeguarding network security and user privacy.However,encrypting malicious traffic can lead to numerous security issues,making the effective classification of encrypted traffic essential.Existing methods for detecting encrypted traffic face two significant challenges.First,relying solely on the original byte information for classification fails to leverage the rich temporal relationships within network traffic.Second,machine learning and convolutional neural network methods lack sufficient network expression capabilities,hindering the full exploration of traffic’s potential characteristics.To address these limitations,this study introduces a traffic classification method that utilizes time relationships and a higher-order graph neural network,termed HGNN-ETC.This approach fully exploits the original byte information and chronological relationships of traffic packets,transforming traffic data into a graph structure to provide the model with more comprehensive context information.HGNN-ETC employs an innovative k-dimensional graph neural network to effectively capture the multi-scale structural features of traffic graphs,enabling more accurate classification.We select the ISCXVPN and the USTC-TK2016 dataset for our experiments.The results show that compared with other state-of-the-art methods,our method can obtain a better classification effect on different datasets,and the accuracy rate is about 97.00%.In addition,by analyzing the impact of varying input specifications on classification performance,we determine the optimal network data truncation strategy and confirm the model’s excellent generalization ability on different datasets.展开更多
Low-Earth Orbit Satellite Constellations(LEO-SCs)provide global,high-speed,and low latency Internet access services,which bridges the digital divide in the remote areas.As inter-satellite links are not supported in in...Low-Earth Orbit Satellite Constellations(LEO-SCs)provide global,high-speed,and low latency Internet access services,which bridges the digital divide in the remote areas.As inter-satellite links are not supported in initial deployment(i.e.the Starlink),the communication between satellites is based on ground stations with radio frequency signals.Due to the rapid movement of satellites,this hybrid topology of LEO-SCs and ground stations is time-varying,which imposes a major challenge to uninterrupted service provisioning and network management.In this paper,we focus on solving two notable problems in such a ground station-assisted LEO-SC topology,i.e.,traffic engineering and fast reroute,to guarantee that the packets are forwarded in a balanced and uninterrupted manner.Specifically,we employ segment routing to support the arbitrary path routing in LEO-SCs.To solve the traffic engineering problem,we proposed two source routings with traffic splitting algorithms,Delay-Bounded Traffic Splitting(DBTS)and DBTS+,where DBTS equally splits a flow and DBTS+favors shorter paths.Simu-lation results show that DBTS+can achieve about 30%lower maximum satellite load at the cost of about 10%more delay.To guarantee the fast recovery of failures,two fast reroute mechanisms,Loop-Free Alternate(LFA)and LFA+,are studied,where LFA pre-computes an alternate next-hop as a backup while LFA+finds a 2-segment backup path.We show that LFA+can increase the percentage of protection coverage by about 15%.展开更多
In the rapidly evolving field of cybersecurity,the challenge of providing realistic exercise scenarios that accurately mimic real-world threats has become increasingly critical.Traditional methods often fall short in ...In the rapidly evolving field of cybersecurity,the challenge of providing realistic exercise scenarios that accurately mimic real-world threats has become increasingly critical.Traditional methods often fall short in capturing the dynamic and complex nature of modern cyber threats.To address this gap,we propose a comprehensive framework designed to create authentic network environments tailored for cybersecurity exercise systems.Our framework leverages advanced simulation techniques to generate scenarios that mirror actual network conditions faced by professionals in the field.The cornerstone of our approach is the use of a conditional tabular generative adversarial network(CTGAN),a sophisticated tool that synthesizes realistic synthetic network traffic by learning fromreal data patterns.This technology allows us to handle technical components and sensitive information with high fidelity,ensuring that the synthetic data maintains statistical characteristics similar to those observed in real network environments.By meticulously analyzing the data collected from various network layers and translating these into structured tabular formats,our framework can generate network traffic that closely resembles that found in actual scenarios.An integral part of our process involves deploying this synthetic data within a simulated network environment,structured on software-defined networking(SDN)principles,to test and refine the traffic patterns.This simulation not only facilitates a direct comparison between the synthetic and real traffic but also enables us to identify discrepancies and refine the accuracy of our simulations.Our initial findings indicate an error rate of approximately 29.28%between the synthetic and real traffic data,highlighting areas for further improvement and adjustment.By providing a diverse array of network scenarios through our framework,we aim to enhance the exercise systems used by cybersecurity professionals.This not only improves their ability to respond to actual cyber threats but also ensures that the exercise is cost-effective and efficient.展开更多
基金supported by the Leading Talent Support Program for Agricultural Talents of the Chinese Academy of Agricultural Sciences(TCS2022020)the General program of National Natural Science Foundation of China(1573263)。
文摘Rapidly expanding studies investigate the effects of e-commerce on company operations in the retail market.However,the interaction between agri-food e-commerce(AEC)and the traditional agri-food wholesale industry(AWI)has not received enough attention in the existing literature.Based on the provincial panel data from 2013 to 2020 in China,this paper examines the effect of AEC on AWI,comprising three dimensions:digitalization(DIGITAL),agrifood e-commerce infrastructure and supporting services(AECI),and agri-food e-commerce economy(AECE).First,AWI and AEC are measured using an entropy-based combination of indicators.The results indicate that for China as a whole,AWI has remained practically unchanged,whereas AEC exhibits a significant rising trend.Second,the findings of the fixed-effect regression reveal that DIGITAL and AECE tend to raise AWI,whereas AECI negatively affects AWI.Third,threshold regression results indicate that AECI tends to diminish AWI with three-stage inhibitory intensity,which manifests as a first increase and then a drop in the inhibition degree.These results suggest that with the introduction of e-commerce for agricultural product circulation,digital development will have catfish effects that tend to stimulate the vitality of the conventional wholesale industry and promote technical progress.Furthermore,the traditional wholesale industry benefits financially from e-commerce even while it diverts part of the traditional wholesale circulation for agricultural products.
基金Supported by Western Project of National Social Science Fund of China(23XJY013)Project of Social Science Foundation of Shaanxi Province(2022D032).
文摘With the rapid growth of the global digital economy, cross-border e-commerce, as an emerging form of trade, has gradually become a powerful engine to promote the development of global trade. BRICS is an important force in the global economy, and the progress of the BRICS countries' trade facilitation level has an important impact on the global trade environment. This paper conducts an in-depth study of the dynamic changes in BRICS trade facilitation from 2013 to 2022, and uses an extended gravity model to analyze the specific impact of this change on China's exports using cross-border e-commerce. The results show that although the BRICS countries have made some progress in trade facilitation, the overall level still needs to be improved, and there are obvious differences among member countries. However, the improvement of trade facilitation among BRICS countries has undoubtedly brought significant positive effects to China's exports using cross-border e-commerce.
文摘This research introduces a novel approach to improve and optimize the predictive capacity of consumer purchase behaviors on e-commerce platforms. This study presented an introduction to the fundamental concepts of the logistic regression algorithm. In addition, it analyzed user data obtained from an e-commerce platform. The original data were preprocessed, and a consumer purchase prediction model was developed for the e-commerce platform using the logistic regression method. The comparison study used the classic random forest approach, further enhanced by including the K-fold cross-validation method. Evaluation of the accuracy of the model’s classification was conducted using performance indicators that included the accuracy rate, the precision rate, the recall rate, and the F1 score. A visual examination determined the significance of the findings. The findings suggest that employing the logistic regression algorithm to forecast customer purchase behaviors on e-commerce platforms can improve the efficacy of the approach and yield more accurate predictions. This study serves as a valuable resource for improving the precision of forecasting customers’ purchase behaviors on e-commerce platforms. It has significant practical implications for optimizing the operational efficiency of e-commerce platforms.
文摘Analyze the compatibility between cosmetics and live streaming e-commerce from its own nature,marketing means and supply chain characteristics.According to the prominent problems,sort out the relationship between all parties in the cosmetics live e-commerce industry chain.Combined with the latest regulatory policies of live streaming e-commerce and cosmetics,the responsibilities of different subjects in cosmetics live streaming e-commerce are summarized,and relevant suggestions and countermeasures are put forward for the standardization and development of live streaming e-commerce.Cosmetics brand owners are the first responsible persons for product quality.Anchors,as a mixed identity between intermediary,advertising spokesperson and operator,should bear stricter joint and several liability when recommending products related to consumers’health.If anchors fail to clearly identify themselves in the recommendation process,thus causing consumers to mistake them for the operator of the cosmetics,they should assume the obligations of the operator.
基金National Natural Science Foundation of China(NSFC)Youth Project“Research on Household Debt Behavior and Its Impact on Economic Inequality in the Context of Common Prosperity”(Grant No.72203136),the Youth Project of the Guangdong Planning Office of Philosophy and Social Science(GDPOPSS)“E-commerce Development and Consumption Disparity of Rural Households:Theoretical Mechanism,Empirical Test and Policy Optimization”(Grant No.GD24YYJ27).
文摘In the context of China’s ongoing efforts to promote countryside revitalization and facilitate domestic economic circulation,it is of great significance to reduce the consumption disparity among rural households and unleash the consumption potential in the countryside.Based on data from China Family Panel Studies,this paper adopts a staggered difference-in-differences method to assess the impact of the e-commerce to enter rural areas on the consumption disparity among rural households.Findings:the comprehensive demonstration work of promoting e-commerce to enter rural areas has reduced the consumption disparity among rural households through the following mechanisms.Firstly,this policy initiative has mitigated the consumption-inhibiting effect on rural household consumption due to the local market size and external market accessibility by promoting the distribution of consumer goods to villages.Secondly,this policy initiative has also increased the agricultural income of rural households and reduced their consumption disparity by distributing farm produce to cities and enhancing the agricultural income of rural households.Moreover,the work is characterized by inclusive growth and is not susceptible to the“elite capture”phenomenon.
文摘E-commerce live broadcast has an important influence on consumers’purchase intention.The three dimensions of live broadcast content in the broadcast room are the number of comments,product quality,and live content as independent variables.A theoretical model is constructed with perceived value and risk as intermediaries and the consumers’purchase intention as the dependent variable,and corresponding hypotheses are put forward.We designed the scale,collected relevant data,and tested the model hypothesis using Statistical Package for Social Sciences(SPSS)and Analysis of Moment Structure(AMOS)software.The study found that the number of comments and product quality had a significant impact on perceived value,perceived risk,and consumers’purchase intention.From this conclusion,it is suggested that businesses should control the number of comments,strengthen the product quality of comments,and distinguish the repetition degree of the content of live broadcasts.
基金Research on the Measurement of the Development Level of Rural E-commerce and the Enhancement of Profitability in Guangxi(Project No.2022KY0618).
文摘The development of rural e-commerce is becoming an important driver for the transformation of China’s rural economy,and with the rapid development of information technology and the upgrading of the agricultural industry,rural e-commerce is showing a vigorous momentum of development.Traditionally,agricultural products are mainly sold through traditional farmers’markets,which are subjected to geography and channel limitations,resulting in inefficient circulation of agricultural products.This paper analyzes the definition,the status quo,as well as the influencing factors of rural e-commerce development.On this basis,countermeasures for the advancement of rural e-commerce development are put forward.
文摘With the rapid development of science and technology,the face of human society has undergone great changes;with the emergence of the Internet era,all kinds of educational technology,equipment,and software in vocational colleges have been widely used to carry out education and teaching,and has achieved remarkable results.Based on this,colleges and universities’electronic commerce(e-commerce)professional teachers should try to rely on the Internet to build information teaching classrooms,introduce advanced methods to build efficient classrooms by integrating teaching resources,and optimize the top-level design,so as to activate the classroom atmosphere,mobilize students’emotions,make them immersed in the teaching of electronic commerce courses.In view of this,this paper combines the existing theory and experience,first analyzes the dilemma faced by the current teaching of e-commerce in vocational colleges,then discusses the practical significance of teaching reform based on the Internet era,and lastly puts forward the specific practice path.
基金Phased Research Key Project of Shanghai China Vocational Education Association“Research on Digital Transformation Path of Vocational Education Driven by AIGC from the Perspective of New Quality Productivity”,Phased Research Project of Shanghai Computer Industry Association“The Reform and Exploration of Cross-border E-commerce Talent Cultivation in Vocational Colleges from the Perspective of Industry Education Integration”(Project No.sctakt202404)。
文摘This article takes the female community platform“Little Red Book”as an example to explore the optimization and innovation of mobile community e-commerce operation mode under Artificial Intelligence(AI)empowerment.Firstly,the relevant concepts were defined,and then the unique attributes of mobile community e-commerce were analyzed.As a typical representative of mobile community e-commerce,Little Red Book introduces the background and characteristics of its platform,analyzes its mobile community operation mode,and focuses on exploring how to establish a mobile community e-commerce platform and effective operation mode under the empowerment of AI technology,to provide some reference and inspiration for the development and operation of Little Red Book and other e-commerce platform enterprises.
基金Under the auspices of National Natural Science Foundation of China(No.42071165,41801144)GDAS’Project of Science and Technology Development(No.2023GDASZH-2023010101,2021GDASYL-20210103004)。
文摘The intermediate link compression characteristics of e-commerce express logistics ne tworks influence the tradition al mode of circulation of goods and economic organization,and alter the city spatial pattern.Based on the theory of space of flows,this study adopts China Smart Logistics Network relational data to build China's e-commerce express logistics network and explore its spatial structure characteristics through social network analysis(SNA),the PageRank technique,and geospatial methods.The results are as follows:the network density is 0.9270,which is close to 1;hence,indicating that e-commerce express logistics lines between Chinese cities are nearly complete and they form a typical network structure,thereby eliminating fragmented spaces.Moreover,the average minimum number of edges is 1.1375,which indicates that the network has a small world effect and thus has a high flow efficiency of logistics elements.A significant hierarchical diffusion effect was observed in dominant flows with the highest edge weights.A diamond-structured network was formed with Shanghai,Guangzhou,Chongqing,and Beijing as the four core nodes.Other node cities with a large logistics scale and importance in the network are mainly located in the 19 city agglomerations of China,revealing the fact that the development of city agglomerations is essential for promoting the separation of experience space and changing the urban spatial pattern.This study enriches the theory of urban networks,reveals the flow laws of modern logistics elements,and encourages coordinated development of urban logistics.
文摘Most traditional trust computing models in E-commerce do not take the transaction frequency among participating entities into consideration,which makes it easy for one party of the transaction to obtain a high trust value in a short time,and brings many disadvantages,uncertainties and even attacks.To solve this problem,a transaction frequency based trust is proposed in this study.The proposed method is composed of two parts.The first part is built on the classic Bayes analysis based trust modelswhich are ease of computing for the E-commerce system.The second part is the transaction frequency module which can mitigate the potential insecurity caused by one participating entity gaining trust in a short time.Simulations show that the proposed method can effectively mitigate the self-promoting attacks so as to maintain the function of E-commerce system.
基金supported by the National Natural Science Foundation of China (No.72073041,No.61903131)2020 Hunan Provincial Higher Education Teaching Reform Research Project (Nos.HNJG-2020-1130,HNJG-2020-1124)+1 种基金2020 General Project of Hunan Social Science Fund (No.20B16)Outstanding Youth of Department of Education of Hunan Province (No.20B096)and the China Postdoctoral Science Foundation (No.2020M683715).
文摘The rapidly escalating sophistication of e-commerce fraud in recent years has led to an increasing reliance on fraud detection methods based on machine learning.However,fraud detection methods based on conventional machine learning approaches suffer from several problems,including an excessively high number of network parameters,which decreases the efficiency and increases the difficulty of training the network,while simultaneously leading to network overfitting.In addition,the sparsity of positive fraud incidents relative to the overwhelming proportion of negative incidents leads to detection failures in trained networks.The present work addresses these issues by proposing a convolutional neural network(CNN)framework for detecting ecommerce fraud,where network training is conducted using historical market transaction data.The number of network parameters reduces via the local perception field and weight sharing inherent in the CNN framework.In addition,this deep learning framework enables the use of an algorithmiclevel approach to address dataset imbalance by focusing the CNN model on minority data classes.The proposed CNN model is trained and tested using a large public e-commerce service dataset from 2018,and the test results demonstrate that the model provides higher fraud prediction accuracy than existing state-of-the-art methods.
文摘Information and communication technologies are spreading rapidly due to their fast proliferation in many fields.The number of Internet users has led to a spike in cyber-attack incidents.E-commerce applications,such as online banking,marketing,trading,and other online businesses,play an integral role in our lives.Network Intrusion Detection System(NIDS)is essential to protect the network from unauthorized access and against other cyber-attacks.The existing NIDS systems are based on the Backward Oracle Matching(BOM)algorithm,which minimizes the false alarm rate and causes of high packet drop ratio.This paper discussed the existing NIDS systems and different used pattern-matching techniques regarding their weaknesses and limitations.To address the existing system issues,this paper proposes an enhanced version of the BOM algorithm by using multiple pattern-matching methods for the NIDS system to improve the network performance.The proposed solution is tested in simulation with existing solutions using the Snort and NSL-KDD datasets.The experimental results indicated that the proposed solution performed better than the existing solutions and achieved a 5.17%detection rate and a 0.22%lower false alarm rate than the existing solution.
基金supported by the National Natural Science Foundation of China under Grant 61602162the Hubei Provincial Science and Technology Plan Project under Grant 2023BCB041.
文摘Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexity,leading to practical problems in traffic identification data analytics.Since the original Dung Beetle Optimizer(DBO)algorithm,Grey Wolf Optimization(GWO)algorithm,Whale Optimization Algorithm(WOA),and Particle Swarm Optimization(PSO)algorithm have the shortcomings of slow convergence and easily fall into the local optimal solution,an Improved Dung Beetle Optimizer(IDBO)algorithm is proposed for network traffic identification.Firstly,the Sobol sequence is utilized to initialize the dung beetle population,laying the foundation for finding the global optimal solution.Next,an integration of levy flight and golden sine strategy is suggested to give dung beetles a greater probability of exploring unvisited areas,escaping from the local optimal solution,and converging more effectively towards a global optimal solution.Finally,an adaptive weight factor is utilized to enhance the search capabilities of the original DBO algorithm and accelerate convergence.With the improvements above,the proposed IDBO algorithm is then applied to traffic identification data analytics and feature selection,as so to find the optimal subset for K-Nearest Neighbor(KNN)classification.The simulation experiments use the CICIDS2017 dataset to verify the effectiveness of the proposed IDBO algorithm and compare it with the original DBO,GWO,WOA,and PSO algorithms.The experimental results show that,compared with other algorithms,the accuracy and recall are improved by 1.53%and 0.88%in binary classification,and the Distributed Denial of Service(DDoS)class identification is the most effective in multi-classification,with an improvement of 5.80%and 0.33%for accuracy and recall,respectively.Therefore,the proposed IDBO algorithm is effective in increasing the efficiency of traffic identification and solving the problem of the original DBO algorithm that converges slowly and falls into the local optimal solution when dealing with high-dimensional data analytics and feature selection for network traffic identification.
文摘The article takes China’s e-commerce as the research object.Starting from the macro level of e-commerce development and taking the rapid rise of“Pinduoduo”as an example,it discusses the“traffic dilemma”and its influence in the traditional e-commerce platform.This discovers the internal mechanism of mobile e-commerce to solve the problem of traffic distribution mechanism by socialization.After that,this study compares the difference between traditional e-commerce and social-commerce systematically,and concludes that traditional e-commerce platform is a necessary process of the development of social-commerce.Socialization is an important trend of the development of traditional e-commerce and social-commerce will promote the realization of C2B model.
基金supported by the National Key Research and Development Program of China(2021YFB2900200)the Key Research and Development Program of Science and Technology Department of Zhejiang Province(2022C01121)Zhejiang Provincial Department of Transport Research Project(ZJXL-JTT-202223).
文摘Urban traffic control is a multifaceted and demanding task that necessitates extensive decision-making to ensure the safety and efficiency of urban transportation systems.Traditional approaches require traffic signal professionals to manually intervene on traffic control devices at the intersection level,utilizing their knowledge and expertise.However,this process is cumbersome,labor-intensive,and cannot be applied on a large network scale.Recent studies have begun to explore the applicability of recommendation system for urban traffic control,which offer increased control efficiency and scalability.Such a decision recommendation system is complex,with various interdependent components,but a systematic literature review has not yet been conducted.In this work,we present an up-to-date survey that elucidates all the detailed components of a recommendation system for urban traffic control,demonstrates the utility and efficacy of such a system in the real world using data and knowledgedriven approaches,and discusses the current challenges and potential future directions of this field.
基金supported by Science and Technology Plan Project of Zhejiang Provincial Department of Transportation“Research and System Development of Highway Asset Digitalization Technology inUse Based onHigh-PrecisionMap”(Project Number:202203)in part by Science and Technology Plan Project of Zhejiang Provincial Department of Transportation:Research and Demonstration Application of Key Technologies for Precise Sensing of Expressway Thrown Objects(No.202204).
文摘Traffic prediction already plays a significant role in applications like traffic planning and urban management,but it is still difficult to capture the highly non-linear and complicated spatiotemporal correlations of traffic data.As well as to fulfil both long-termand short-termprediction objectives,a better representation of the temporal dependency and global spatial correlation of traffic data is needed.In order to do this,the Spatiotemporal Graph Neural Network(S-GNN)is proposed in this research as amethod for traffic prediction.The S-GNN simultaneously accepts various traffic data as inputs and investigates the non-linear correlations between the variables.In terms of modelling,the road network is initially represented as a spatiotemporal directed graph,with the features of the samples at the time step being captured by a convolution module.In order to assign varying attention weights to various adjacent area nodes of the target node,the adjacent areas information of nodes in the road network is then aggregated using a graph network.The data is output using a fully connected layer at the end.The findings show that S-GNN can improve short-and long-term traffic prediction accuracy to a greater extent;in comparison to the control model,the RMSE of S-GNN is reduced by about 0.571 to 9.288 and the MAE(Mean Absolute Error)by about 0.314 to 7.678.The experimental results on two real datasets,Pe MSD7(M)and PEMS-BAY,also support this claim.
基金supported in part by the National Key Research and Development Program of China(No.2022YFB4500800)the National Science Foundation of China(No.42071431).
文摘Encrypted traffic plays a crucial role in safeguarding network security and user privacy.However,encrypting malicious traffic can lead to numerous security issues,making the effective classification of encrypted traffic essential.Existing methods for detecting encrypted traffic face two significant challenges.First,relying solely on the original byte information for classification fails to leverage the rich temporal relationships within network traffic.Second,machine learning and convolutional neural network methods lack sufficient network expression capabilities,hindering the full exploration of traffic’s potential characteristics.To address these limitations,this study introduces a traffic classification method that utilizes time relationships and a higher-order graph neural network,termed HGNN-ETC.This approach fully exploits the original byte information and chronological relationships of traffic packets,transforming traffic data into a graph structure to provide the model with more comprehensive context information.HGNN-ETC employs an innovative k-dimensional graph neural network to effectively capture the multi-scale structural features of traffic graphs,enabling more accurate classification.We select the ISCXVPN and the USTC-TK2016 dataset for our experiments.The results show that compared with other state-of-the-art methods,our method can obtain a better classification effect on different datasets,and the accuracy rate is about 97.00%.In addition,by analyzing the impact of varying input specifications on classification performance,we determine the optimal network data truncation strategy and confirm the model’s excellent generalization ability on different datasets.
文摘Low-Earth Orbit Satellite Constellations(LEO-SCs)provide global,high-speed,and low latency Internet access services,which bridges the digital divide in the remote areas.As inter-satellite links are not supported in initial deployment(i.e.the Starlink),the communication between satellites is based on ground stations with radio frequency signals.Due to the rapid movement of satellites,this hybrid topology of LEO-SCs and ground stations is time-varying,which imposes a major challenge to uninterrupted service provisioning and network management.In this paper,we focus on solving two notable problems in such a ground station-assisted LEO-SC topology,i.e.,traffic engineering and fast reroute,to guarantee that the packets are forwarded in a balanced and uninterrupted manner.Specifically,we employ segment routing to support the arbitrary path routing in LEO-SCs.To solve the traffic engineering problem,we proposed two source routings with traffic splitting algorithms,Delay-Bounded Traffic Splitting(DBTS)and DBTS+,where DBTS equally splits a flow and DBTS+favors shorter paths.Simu-lation results show that DBTS+can achieve about 30%lower maximum satellite load at the cost of about 10%more delay.To guarantee the fast recovery of failures,two fast reroute mechanisms,Loop-Free Alternate(LFA)and LFA+,are studied,where LFA pre-computes an alternate next-hop as a backup while LFA+finds a 2-segment backup path.We show that LFA+can increase the percentage of protection coverage by about 15%.
基金supported in part by the Korea Research Institute for Defense Technology Planning and Advancement(KRIT)funded by the Korean Government’s Defense Acquisition Program Administration(DAPA)under Grant KRIT-CT-21-037in part by the Ministry of Education,Republic of Koreain part by the National Research Foundation of Korea under Grant RS-2023-00211871.
文摘In the rapidly evolving field of cybersecurity,the challenge of providing realistic exercise scenarios that accurately mimic real-world threats has become increasingly critical.Traditional methods often fall short in capturing the dynamic and complex nature of modern cyber threats.To address this gap,we propose a comprehensive framework designed to create authentic network environments tailored for cybersecurity exercise systems.Our framework leverages advanced simulation techniques to generate scenarios that mirror actual network conditions faced by professionals in the field.The cornerstone of our approach is the use of a conditional tabular generative adversarial network(CTGAN),a sophisticated tool that synthesizes realistic synthetic network traffic by learning fromreal data patterns.This technology allows us to handle technical components and sensitive information with high fidelity,ensuring that the synthetic data maintains statistical characteristics similar to those observed in real network environments.By meticulously analyzing the data collected from various network layers and translating these into structured tabular formats,our framework can generate network traffic that closely resembles that found in actual scenarios.An integral part of our process involves deploying this synthetic data within a simulated network environment,structured on software-defined networking(SDN)principles,to test and refine the traffic patterns.This simulation not only facilitates a direct comparison between the synthetic and real traffic but also enables us to identify discrepancies and refine the accuracy of our simulations.Our initial findings indicate an error rate of approximately 29.28%between the synthetic and real traffic data,highlighting areas for further improvement and adjustment.By providing a diverse array of network scenarios through our framework,we aim to enhance the exercise systems used by cybersecurity professionals.This not only improves their ability to respond to actual cyber threats but also ensures that the exercise is cost-effective and efficient.