Microtubule-severing enzymes(MTSEs)play important roles in mitosis and meiosis of the primitive organisms.However,their roles in mammalian female meiosis,which accounts for over 80%of gamete-originated human reproduct...Microtubule-severing enzymes(MTSEs)play important roles in mitosis and meiosis of the primitive organisms.However,their roles in mammalian female meiosis,which accounts for over 80%of gamete-originated human reproductive diseases,remain unexplored.In the current study,we reported that katanin-like 2(KL2)was the only MTSE concentrating at chromosomes.Furthermore,the knockdown of KL2 significantly reduced the chromosome-based increase in the microtubule(MT)polymer,increased aberrant kinetochore-MT(K-MT)attachment,delayed meiosis,and severely affected normal fertility.We demonstrated that the inhibition of aurora B,a key kinase for correcting aberrant K-MT attachment,significantly eliminated KL2 expression from chromosomes.Additionally,KL2 interacted with phosphorylated eukaryotic elongation factor-2 kinase,and they competed for chromosome binding.Phosphorylated KL2 was also localized at spindle poles,with its phosphorylation regulated by extracellular signal-regulated kinase 1/2.In summary,the current study reveals a novel function of MTSEs in mammalian female meiosis and demonstrates that multiple kinases coordinate to regulate the levels of KL2 at chromosomes.展开更多
Genetic information is transcribed from genomic DNA to mRNA,which is then translated into threedimensional proteins.mRNAs can undergo various post-transcriptional modifications,including RNA editing that alters mRNA s...Genetic information is transcribed from genomic DNA to mRNA,which is then translated into threedimensional proteins.mRNAs can undergo various post-transcriptional modifications,including RNA editing that alters mRNA sequences,ultimately affecting protein function.In this study,RNA editing was identified at the 499th base(c.499)of human vaccinia-related kinase 2(VRK2).This RNA editing changes the amino acid in the catalytic domain of VRK2 from isoleucine(with adenine base)to valine(with guanine base).Isoleucine-containing VRK2 has higher kinase activity than the valine-containing VRK2,which leads to an increase in tumor cell proliferation.Earlier we reported that VRK2 directly interacts with dystrobrevin-binding protein(dysbindin)and results in reducing its stability.Herein,we demonstrate that isoleucine-containing VRK2 decreases the level of dysbindin than valinecontaining VRK2.Dysbindin interacts with cyclin D and thereby regulates its expression and function.The reduction in the level of dysbindin by isoleucine-containing VRK2 further enhances the cyclin D expression,resulting in increased tumor growth and reduction in survival rates.It has also been observed that in patient samples,VRK2 level was elevated in breast cancer tissue compared to normal breast tissue.Additionally,the isoleucine form of VRK2 exhibited a greater increase in breast cancer tissue.Therefore,it is concluded that VRK2,especially dependent on the 167th variant amino acid,can be one of the indexes of tumor progression and proliferation.展开更多
BACKGROUND We report a rare case of primary clinical presentation featuring elevated creatine kinase(CK)levels in a neonate,which is associated with the LAMA2 gene.In this case,a heterozygous mutation in exon5 of the ...BACKGROUND We report a rare case of primary clinical presentation featuring elevated creatine kinase(CK)levels in a neonate,which is associated with the LAMA2 gene.In this case,a heterozygous mutation in exon5 of the LAMA2 gene,c.715C>G(resulting in a change of nucleotide number 715 in the coding region from cytosine to gua-nine),induced an amino acid alteration p.R239G(No.239)in the patient,repre-senting a missense mutation.This observation may be elucidated by the neonatal creatine monitoring mechanism,a phenomenon not previously reported.CASE SUMMARY We analysed the case of a neonate presenting solely with elevated CK levels who was eventually discharged after supportive treatment.The chief complaint was identification of increased CK levels for 15 d and higher CK values for 1 d.Ad-mission occurred at 18 d of age,and despite prolonged treatment with creatine and vitamin C,the elevated CK levels showed limited improvement.Whole exo-me sequencing revealed the presence of a c.715C>G mutation in LAMA2 in the newborn,correlating with a clinical phenotype.However,the available informa-tion offers insufficient evidence for clinical pathogenicity.CONCLUSION Mutations in LAMA2 are associated with the clinical phenotype of increased neonatal CK levels,for which no specific treatment exists.Whole genome sequen-cing facilitates early diagnosis.展开更多
BACKGROUND Trastuzumab constitutes the fundamental component of initial therapy for patients with advanced human epidermal growth factor receptor 2(HER-2)-positive gastric cancer(GC).However,the efficacy of this treat...BACKGROUND Trastuzumab constitutes the fundamental component of initial therapy for patients with advanced human epidermal growth factor receptor 2(HER-2)-positive gastric cancer(GC).However,the efficacy of this treatment is hindered by substantial challenges associated with both primary and acquired drug resistance.While S-phase kinase associated protein 2(Skp2)overexpression has been implicated in the malignant progression of GC,its role in regulating trastuzumab resistance in this context remains uncertain.Despite the numerous studies investigating Skp2 inhibitors among small molecule compounds and natural products,there has been a lack of successful commercialization of drugs specifically targeting Skp2.AIM To discover a Skp2 blocker among currently available medications and develop a therapeutic strategy for HER2-positive GC patients who have experienced progression following trastuzumab-based treatment.METHODS Skp2 exogenous overexpression plasmids and small interfering RNA vectors were utilized to investigate the correlation between Skp2 expression and trastuzumab resistance in GC cells.Q-PCR,western blot,and immunohistochemical analyses were conducted to evaluate the regulatory effect of thioridazine on Skp2 expression.A cell counting kit-8 assay,flow cytometry,a amplex red glucose/glucose oxidase assay kit,and a lactate assay kit were utilized to measure the proliferation,apoptosis,and glycolytic activity of GC cells in vitro.A xenograft model established with human GC in nude mice was used to assess thioridazine's effectiveness in vivo.RESULTS The expression of Skp2 exhibited a negative correlation with the sensitivity of HER2-positive GC cells to trastuzumab.Thioridazine demonstrated the ability to directly bind to Skp2,resulting in a reduction in Skp2 expression at both the transcriptional and translational levels.Moreover,thioridazine effectively inhibited cell proliferation,exhibited antiapoptotic properties,and decreased the glucose uptake rate and lactate production by suppressing Skp2/protein kinase B/mammalian target of rapamycin/glucose transporter type 1 signaling pathways.The combination of thioridazine with either trastuzumab or lapatinib exhibited a more pronounced anticancer effect in vivo,surpassing the efficacy of either monotherapy.CONCLUSION Thioridazine demonstrates promising outcomes in preclinical GC models and offers a novel therapeutic approach for addressing trastuzumab resistance,particularly when used in conjunction with lapatinib.This compound has potential benefits for patients with Skp2-proficient tumors.展开更多
The body of evidence investigating human epidermal growth factor receptor-2(HER2)directed therapy in patients with breast cancer(BC)has been growing within the last decade.Recently,the use of tyrosine kinase inhibitor...The body of evidence investigating human epidermal growth factor receptor-2(HER2)directed therapy in patients with breast cancer(BC)has been growing within the last decade.Recently,the use of tyrosine kinase inhibitors(TKIs)has been of particular interest in the treatment of human malignancies.This literature commentary is intended to highlight the most recent findings associated with the widely-studied TKI agents and their clinical significance in improving the outcomes of HER2 positive BC.展开更多
Objective To provide a summary of the relationship between the eEF-2/eEF-2 kinase pathway and each phase of malignant neoplasms. The specific importance of this relationship in understanding and treating cancer was al...Objective To provide a summary of the relationship between the eEF-2/eEF-2 kinase pathway and each phase of malignant neoplasms. The specific importance of this relationship in understanding and treating cancer was also explored. Data sources The data used in this review were mainly obtained from the articles listed in HighWire and PubMed in English. The search terms were "eEF-2 kinase", "oncogenesis", and "tumor progression". Study selection This review relates the observation that the overexpression of eEF-2 kinase is seen in cancer, and highlights that it has emerged as promoting the development of many malignant phenotypes when unregulated. This includes increasing the replicative potential of cells, angiogenesis, invasion and metastasis, and evasion of apoptosis. Results eEF-2 kinase is a structurally and functionally unique protein kinase. The increased activity of this protein in cancer cells is a protective mechanism to allow tumor growth and evolution, and resist cell death through the eEF-2/eEF-2 kinase pathway, but it also makes a potential target for therapy. Conclusion eEF-2 kinase fills critical niches in the life of a cancer cell and the eEF-2/eEF-2 kinase pathway is a key biochemical sensor.展开更多
Objective Machado-Joseph disease (MJD)/Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by an expansion of polyglutamine tract near the C-terminus of the MJD1 gene pr...Objective Machado-Joseph disease (MJD)/Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by an expansion of polyglutamine tract near the C-terminus of the MJD1 gene product, ataxin-3. The precise mechanism of the MJD/SCA3 pathogenesis remains unclear. A growing body of evidence demonstrates that phosphorylation plays an important role in the pathogenesis of many neurodegenerative diseases. However, few kinases are known to phosphorylate ataxin-3. The present study is to explore whether ataxin-3 is a substrate of casein kinase 2 (CK2). Methods The interaction between ataxin-3 and CK2 was identified by glutathione S-transferase (GST) pull-down assay and co-immunoprecipition assay. The phosphorylation of ataxin-3 by CK2 was measured by in vitro phosphorylation assays. Results (1) Both wild type and expanded ataxin-3 interacted with CK2α and CK2β in vitro. (2) In 293 cells, both wild type and expanded ataxin-3 interacted with CK2β, but not CK2α. (3) CK2 phosphorylated wild type and expanded ataxin-3. Conclusion Ataxin-3 is a substrate of protein kinase CK2.展开更多
Previously the partial sequence of an ethylene receptor gene NTHK2 was isolated from tobacco (Nicotiana tabacum L. var. Xanthi) plants and it was wound and drought inducible. In the present study full-length cDNA of N...Previously the partial sequence of an ethylene receptor gene NTHK2 was isolated from tobacco (Nicotiana tabacum L. var. Xanthi) plants and it was wound and drought inducible. In the present study full-length cDNA of NTHK2 was cloned by 5'-RACE method. NTHK2 gene has 3 216 bp, with 509 bp of 5'-non-coding region and 427 lip of 3'-non-coding region, and encodes an ethylene-receptor homolog of 760, amino acids. NTHK2 protein has a putative signal peptide, three transmembrane domains, a histidine kinase domain and a receiver domain. In the putative histidine kinase domain, the histidine at the phosphorylation site was replaced by an asparagine. To study the biochemical property of NTHK2, its kinase domain was expressed as a fusion protein with glutathione S-transferase (GST) using yeast Schizzosaccharomyces pombe as an expression system. In vitro kinase assay showed that NTHK2 kinase domain can autophosphorylate in the presence of Mg2+, indicating that NTHK2 may function as a kinase. Further studies will elucidate the function of NTHK2 in plant.展开更多
基金supported by the Youth Program of National Natural Science Foundation of China(Grant No.82001539 to Leilei Gao)the Zhejiang Province Health Innovation Talent Project(Grant No.2021RC001 to Zhen Jin)+1 种基金the General Program of the National Natural Science Foundation of China(Grant No.31671561 to Dong Zhang)the Regional Program of National Natural Science Foundation of China(Grant No.82260126 to Xiaocong Liu).
文摘Microtubule-severing enzymes(MTSEs)play important roles in mitosis and meiosis of the primitive organisms.However,their roles in mammalian female meiosis,which accounts for over 80%of gamete-originated human reproductive diseases,remain unexplored.In the current study,we reported that katanin-like 2(KL2)was the only MTSE concentrating at chromosomes.Furthermore,the knockdown of KL2 significantly reduced the chromosome-based increase in the microtubule(MT)polymer,increased aberrant kinetochore-MT(K-MT)attachment,delayed meiosis,and severely affected normal fertility.We demonstrated that the inhibition of aurora B,a key kinase for correcting aberrant K-MT attachment,significantly eliminated KL2 expression from chromosomes.Additionally,KL2 interacted with phosphorylated eukaryotic elongation factor-2 kinase,and they competed for chromosome binding.Phosphorylated KL2 was also localized at spindle poles,with its phosphorylation regulated by extracellular signal-regulated kinase 1/2.In summary,the current study reveals a novel function of MTSEs in mammalian female meiosis and demonstrates that multiple kinases coordinate to regulate the levels of KL2 at chromosomes.
基金supported by the BK21 FOUR funded by the Ministry of Education,Republic of Korea,the National Research Foundation of Korea(NRF-2022R1F1A1066642,RS-2023-00272063)grant funded by the Korean government(MSIT),and POSTECH Basic Science Research Institute Grant(NRF-2021R1A6A1A10042944).Research was also supported by funds donated by Dr.Jae Kyu Lee and Mr.Jason Gim.Following are results of a study on the“Leaders in INdustry-University Cooperation 3.0”Project,supported by the Ministry of Education and National Research Foundation of Korea.
文摘Genetic information is transcribed from genomic DNA to mRNA,which is then translated into threedimensional proteins.mRNAs can undergo various post-transcriptional modifications,including RNA editing that alters mRNA sequences,ultimately affecting protein function.In this study,RNA editing was identified at the 499th base(c.499)of human vaccinia-related kinase 2(VRK2).This RNA editing changes the amino acid in the catalytic domain of VRK2 from isoleucine(with adenine base)to valine(with guanine base).Isoleucine-containing VRK2 has higher kinase activity than the valine-containing VRK2,which leads to an increase in tumor cell proliferation.Earlier we reported that VRK2 directly interacts with dystrobrevin-binding protein(dysbindin)and results in reducing its stability.Herein,we demonstrate that isoleucine-containing VRK2 decreases the level of dysbindin than valinecontaining VRK2.Dysbindin interacts with cyclin D and thereby regulates its expression and function.The reduction in the level of dysbindin by isoleucine-containing VRK2 further enhances the cyclin D expression,resulting in increased tumor growth and reduction in survival rates.It has also been observed that in patient samples,VRK2 level was elevated in breast cancer tissue compared to normal breast tissue.Additionally,the isoleucine form of VRK2 exhibited a greater increase in breast cancer tissue.Therefore,it is concluded that VRK2,especially dependent on the 167th variant amino acid,can be one of the indexes of tumor progression and proliferation.
基金Supported by The Suzhou Science and Technology Development Plan Guiding Project,No.SZSYYXH-2023-YB5The Suzhou Science and Technology Development Plan Project,No.SKY2023002The Suzhou Key Laboratory of Children's Structural Deformities,No.SZS2022018.
文摘BACKGROUND We report a rare case of primary clinical presentation featuring elevated creatine kinase(CK)levels in a neonate,which is associated with the LAMA2 gene.In this case,a heterozygous mutation in exon5 of the LAMA2 gene,c.715C>G(resulting in a change of nucleotide number 715 in the coding region from cytosine to gua-nine),induced an amino acid alteration p.R239G(No.239)in the patient,repre-senting a missense mutation.This observation may be elucidated by the neonatal creatine monitoring mechanism,a phenomenon not previously reported.CASE SUMMARY We analysed the case of a neonate presenting solely with elevated CK levels who was eventually discharged after supportive treatment.The chief complaint was identification of increased CK levels for 15 d and higher CK values for 1 d.Ad-mission occurred at 18 d of age,and despite prolonged treatment with creatine and vitamin C,the elevated CK levels showed limited improvement.Whole exo-me sequencing revealed the presence of a c.715C>G mutation in LAMA2 in the newborn,correlating with a clinical phenotype.However,the available informa-tion offers insufficient evidence for clinical pathogenicity.CONCLUSION Mutations in LAMA2 are associated with the clinical phenotype of increased neonatal CK levels,for which no specific treatment exists.Whole genome sequen-cing facilitates early diagnosis.
基金Supported by Youth Fund of National Natural Science Foundation of China,No.81803575,No.31902287Kaifeng Science and Technology Development Plan Project,No.2203008+2 种基金Key Specialized Research and Promotion Project of Henan Province in 2023,No.232102311205Henan Medical Science and Technology Research Program Project,No.LHGJ20210801College Students Innovation and Entrepreneurship Training Program of Henan University,No.20231022007.
文摘BACKGROUND Trastuzumab constitutes the fundamental component of initial therapy for patients with advanced human epidermal growth factor receptor 2(HER-2)-positive gastric cancer(GC).However,the efficacy of this treatment is hindered by substantial challenges associated with both primary and acquired drug resistance.While S-phase kinase associated protein 2(Skp2)overexpression has been implicated in the malignant progression of GC,its role in regulating trastuzumab resistance in this context remains uncertain.Despite the numerous studies investigating Skp2 inhibitors among small molecule compounds and natural products,there has been a lack of successful commercialization of drugs specifically targeting Skp2.AIM To discover a Skp2 blocker among currently available medications and develop a therapeutic strategy for HER2-positive GC patients who have experienced progression following trastuzumab-based treatment.METHODS Skp2 exogenous overexpression plasmids and small interfering RNA vectors were utilized to investigate the correlation between Skp2 expression and trastuzumab resistance in GC cells.Q-PCR,western blot,and immunohistochemical analyses were conducted to evaluate the regulatory effect of thioridazine on Skp2 expression.A cell counting kit-8 assay,flow cytometry,a amplex red glucose/glucose oxidase assay kit,and a lactate assay kit were utilized to measure the proliferation,apoptosis,and glycolytic activity of GC cells in vitro.A xenograft model established with human GC in nude mice was used to assess thioridazine's effectiveness in vivo.RESULTS The expression of Skp2 exhibited a negative correlation with the sensitivity of HER2-positive GC cells to trastuzumab.Thioridazine demonstrated the ability to directly bind to Skp2,resulting in a reduction in Skp2 expression at both the transcriptional and translational levels.Moreover,thioridazine effectively inhibited cell proliferation,exhibited antiapoptotic properties,and decreased the glucose uptake rate and lactate production by suppressing Skp2/protein kinase B/mammalian target of rapamycin/glucose transporter type 1 signaling pathways.The combination of thioridazine with either trastuzumab or lapatinib exhibited a more pronounced anticancer effect in vivo,surpassing the efficacy of either monotherapy.CONCLUSION Thioridazine demonstrates promising outcomes in preclinical GC models and offers a novel therapeutic approach for addressing trastuzumab resistance,particularly when used in conjunction with lapatinib.This compound has potential benefits for patients with Skp2-proficient tumors.
基金Supported by the Elsa U.Pardee Foundation Grant,No.671432(to Sahu RP)NIH R21 Grant,No.ES033806(to Sahu RP).
文摘The body of evidence investigating human epidermal growth factor receptor-2(HER2)directed therapy in patients with breast cancer(BC)has been growing within the last decade.Recently,the use of tyrosine kinase inhibitors(TKIs)has been of particular interest in the treatment of human malignancies.This literature commentary is intended to highlight the most recent findings associated with the widely-studied TKI agents and their clinical significance in improving the outcomes of HER2 positive BC.
基金This project was supported by grants from the National Natural Science Foundation of China (No. 81072146 and No. 81101913), Natural Science Foundation of Jiangsu Province of China (BK2010224) and Natural Science Foundation of Jiangsu Provincial Colleges and Universities (No. 08KJB310010).
文摘Objective To provide a summary of the relationship between the eEF-2/eEF-2 kinase pathway and each phase of malignant neoplasms. The specific importance of this relationship in understanding and treating cancer was also explored. Data sources The data used in this review were mainly obtained from the articles listed in HighWire and PubMed in English. The search terms were "eEF-2 kinase", "oncogenesis", and "tumor progression". Study selection This review relates the observation that the overexpression of eEF-2 kinase is seen in cancer, and highlights that it has emerged as promoting the development of many malignant phenotypes when unregulated. This includes increasing the replicative potential of cells, angiogenesis, invasion and metastasis, and evasion of apoptosis. Results eEF-2 kinase is a structurally and functionally unique protein kinase. The increased activity of this protein in cancer cells is a protective mechanism to allow tumor growth and evolution, and resist cell death through the eEF-2/eEF-2 kinase pathway, but it also makes a potential target for therapy. Conclusion eEF-2 kinase fills critical niches in the life of a cancer cell and the eEF-2/eEF-2 kinase pathway is a key biochemical sensor.
基金the National Natural Sciences Foundation of China (No. 30770664)a grant from Educational Committee of Anhui Province, China (No. ZD2008008-2).
文摘Objective Machado-Joseph disease (MJD)/Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by an expansion of polyglutamine tract near the C-terminus of the MJD1 gene product, ataxin-3. The precise mechanism of the MJD/SCA3 pathogenesis remains unclear. A growing body of evidence demonstrates that phosphorylation plays an important role in the pathogenesis of many neurodegenerative diseases. However, few kinases are known to phosphorylate ataxin-3. The present study is to explore whether ataxin-3 is a substrate of casein kinase 2 (CK2). Methods The interaction between ataxin-3 and CK2 was identified by glutathione S-transferase (GST) pull-down assay and co-immunoprecipition assay. The phosphorylation of ataxin-3 by CK2 was measured by in vitro phosphorylation assays. Results (1) Both wild type and expanded ataxin-3 interacted with CK2α and CK2β in vitro. (2) In 293 cells, both wild type and expanded ataxin-3 interacted with CK2β, but not CK2α. (3) CK2 phosphorylated wild type and expanded ataxin-3. Conclusion Ataxin-3 is a substrate of protein kinase CK2.
文摘Previously the partial sequence of an ethylene receptor gene NTHK2 was isolated from tobacco (Nicotiana tabacum L. var. Xanthi) plants and it was wound and drought inducible. In the present study full-length cDNA of NTHK2 was cloned by 5'-RACE method. NTHK2 gene has 3 216 bp, with 509 bp of 5'-non-coding region and 427 lip of 3'-non-coding region, and encodes an ethylene-receptor homolog of 760, amino acids. NTHK2 protein has a putative signal peptide, three transmembrane domains, a histidine kinase domain and a receiver domain. In the putative histidine kinase domain, the histidine at the phosphorylation site was replaced by an asparagine. To study the biochemical property of NTHK2, its kinase domain was expressed as a fusion protein with glutathione S-transferase (GST) using yeast Schizzosaccharomyces pombe as an expression system. In vitro kinase assay showed that NTHK2 kinase domain can autophosphorylate in the presence of Mg2+, indicating that NTHK2 may function as a kinase. Further studies will elucidate the function of NTHK2 in plant.