泡沫镍作为电极活性材料的常用骨架,其孔径在500μm以上,为了制备出孔径小、空间利用率高的多孔金属集流体材料,探索了多孔镍/碳纳米管(Ni/CNTs)中空纤维膜的制备新工艺.首先配制包含金属镍粉的铸膜液,通过干-湿纺丝工艺得到中空纤维生...泡沫镍作为电极活性材料的常用骨架,其孔径在500μm以上,为了制备出孔径小、空间利用率高的多孔金属集流体材料,探索了多孔镍/碳纳米管(Ni/CNTs)中空纤维膜的制备新工艺.首先配制包含金属镍粉的铸膜液,通过干-湿纺丝工艺得到中空纤维生坯材料,经烧蚀掉有机物后,金属粉末烧结自组装成多孔镍中空纤维膜;然后以镍膜为基体负载催化剂后,采用化学气相沉积法在镍膜上直接生长CNTs制得多孔Ni/CNTs中空纤维复合膜.通过实验可知:铸膜液配比为wNi∶wPAN∶wPVP∶wNMP=50∶8∶1∶41,纺丝参数为采用插入管式喷丝头,其芯液流量为50 m L/min,计量泵泵供量为8 m L/min,釜内氮气压力为0.1 MPa,喷丝孔直径为1.5 mm,插入管外径为2.5 mm;在950℃还原性气氛下,烧结可以得到孔径5μm左右的多孔镍中空纤维膜.采用0.001 mol/L的Ni/Y催化剂,550℃下混合气体比例vAr∶vH2∶vC2H2=200∶50∶8时进行化学气相沉积,可在中空纤维Ni膜表面可生长出直径20~30 nm的CNTs.展开更多
通过溶液静电纺丝法制备了聚芳醚砜酮(PPESK)微纳米纤维膜,借助于扫描电子显微镜和拉伸试验机分别对纤维膜的形貌和力学性能进行了表征,用正交试验对微纳米纤维膜的制备工艺参数进行了优化。结果表明,在给定条件下,对纤维直径影响由大...通过溶液静电纺丝法制备了聚芳醚砜酮(PPESK)微纳米纤维膜,借助于扫描电子显微镜和拉伸试验机分别对纤维膜的形貌和力学性能进行了表征,用正交试验对微纳米纤维膜的制备工艺参数进行了优化。结果表明,在给定条件下,对纤维直径影响由大到小的工艺参数依次为:溶液浓度>给料速度>纺丝电压。纤维直径最小的工艺条件为:溶液浓度19%,纺丝电压10 k V,给料速度为0.04 mm/min。对纤维膜拉伸强度影响由大到小的工艺参数依次为:给料速度>纺丝电压>溶液浓度。纤维拉伸强度最大的工艺条件为:溶液浓度24%,纺丝电压14 k V,给料速度0.04 mm/min。展开更多
文摘泡沫镍作为电极活性材料的常用骨架,其孔径在500μm以上,为了制备出孔径小、空间利用率高的多孔金属集流体材料,探索了多孔镍/碳纳米管(Ni/CNTs)中空纤维膜的制备新工艺.首先配制包含金属镍粉的铸膜液,通过干-湿纺丝工艺得到中空纤维生坯材料,经烧蚀掉有机物后,金属粉末烧结自组装成多孔镍中空纤维膜;然后以镍膜为基体负载催化剂后,采用化学气相沉积法在镍膜上直接生长CNTs制得多孔Ni/CNTs中空纤维复合膜.通过实验可知:铸膜液配比为wNi∶wPAN∶wPVP∶wNMP=50∶8∶1∶41,纺丝参数为采用插入管式喷丝头,其芯液流量为50 m L/min,计量泵泵供量为8 m L/min,釜内氮气压力为0.1 MPa,喷丝孔直径为1.5 mm,插入管外径为2.5 mm;在950℃还原性气氛下,烧结可以得到孔径5μm左右的多孔镍中空纤维膜.采用0.001 mol/L的Ni/Y催化剂,550℃下混合气体比例vAr∶vH2∶vC2H2=200∶50∶8时进行化学气相沉积,可在中空纤维Ni膜表面可生长出直径20~30 nm的CNTs.
文摘通过溶液静电纺丝法制备了聚芳醚砜酮(PPESK)微纳米纤维膜,借助于扫描电子显微镜和拉伸试验机分别对纤维膜的形貌和力学性能进行了表征,用正交试验对微纳米纤维膜的制备工艺参数进行了优化。结果表明,在给定条件下,对纤维直径影响由大到小的工艺参数依次为:溶液浓度>给料速度>纺丝电压。纤维直径最小的工艺条件为:溶液浓度19%,纺丝电压10 k V,给料速度为0.04 mm/min。对纤维膜拉伸强度影响由大到小的工艺参数依次为:给料速度>纺丝电压>溶液浓度。纤维拉伸强度最大的工艺条件为:溶液浓度24%,纺丝电压14 k V,给料速度0.04 mm/min。