In this study,a one-dimensional simulation was performed to evaluate the performance of in-cylinder combustion to control NO_(x) emissions on a four-stroke,six-cylinder marine medium-speed diesel engine.Reducing the c...In this study,a one-dimensional simulation was performed to evaluate the performance of in-cylinder combustion to control NO_(x) emissions on a four-stroke,six-cylinder marine medium-speed diesel engine.Reducing the combustion temperature is an important in-cylinder measure to decrease NO_(x) emissions of marine diesel engines.The Miller cycle is an effective method used to reduce the maximum combustion temperature in a cylinder and accordingly decrease NO_(x) emissions.Therefore,the authors of this study designed seven different early intake valve closing(EIVC)Miller cycles for the original engine,and analyzed the cycle effects on combustions and emissions in high-load conditions.The results indicate that the temperature in the cylinder was significantly reduced,whereas fuel consumption was almost unchanged.When the IVC was properly advanced,the ignition delay period increased and the premixed combustion accelerated,but the in-cylinder average pressure,temperature and NO_(x) emissions in the cylinder were lower than the original engine.However,closing the intake valve too early led to high fuel consumption.In addition,the NO_(x) emissions,in-cylinder temperature,and heat release rate remarkably increased.Therefore,the optimal timing of the EIVC varied with different loads.The higher the load was,the earlier the best advance angle appeared.Therefore,the Miller cycle is an effective method for in-engine NO_(x) purification and does not entail significant cost.展开更多
通过对一台增压汽油直喷(gasoline direct injection,GDI)发动机活塞和凸轮型线的重新设计实现了高压缩比米勒循环,并在此基础上引入了废气再循环(EGR),研究了不同压缩比米勒循环和EGR综合作用对发动机的性能影响。结果表明:增大压缩比...通过对一台增压汽油直喷(gasoline direct injection,GDI)发动机活塞和凸轮型线的重新设计实现了高压缩比米勒循环,并在此基础上引入了废气再循环(EGR),研究了不同压缩比米勒循环和EGR综合作用对发动机的性能影响。结果表明:增大压缩比和采用米勒循环技术对爆震影响存在取舍(trade-off)关系,低速全负荷下高压缩比米勒循环相比原机油耗略有上升;而低压冷EGR技术由于缸内稀释冷却作用可以优化燃烧相位,对外特性工况有效燃油消耗率有明显的改善作用;在部分负荷工况下,压缩比的增加和米勒燃烧循环可使油耗较原机下降6.3%,在整合低压冷EGR技术后,油耗进一步下降3.1%。可以得出结论,合理地增加压缩比,采用米勒循环技术并匹配低压冷EGR技术,可以大幅改善发动机的燃油经济性。展开更多
基金Supported by the Industry-University-Research Collaboration Project of Jiangsu Province(Grant No.BY2019048)the 19th batch of student scientific research projects of Jiangsu University(19A306)。
文摘In this study,a one-dimensional simulation was performed to evaluate the performance of in-cylinder combustion to control NO_(x) emissions on a four-stroke,six-cylinder marine medium-speed diesel engine.Reducing the combustion temperature is an important in-cylinder measure to decrease NO_(x) emissions of marine diesel engines.The Miller cycle is an effective method used to reduce the maximum combustion temperature in a cylinder and accordingly decrease NO_(x) emissions.Therefore,the authors of this study designed seven different early intake valve closing(EIVC)Miller cycles for the original engine,and analyzed the cycle effects on combustions and emissions in high-load conditions.The results indicate that the temperature in the cylinder was significantly reduced,whereas fuel consumption was almost unchanged.When the IVC was properly advanced,the ignition delay period increased and the premixed combustion accelerated,but the in-cylinder average pressure,temperature and NO_(x) emissions in the cylinder were lower than the original engine.However,closing the intake valve too early led to high fuel consumption.In addition,the NO_(x) emissions,in-cylinder temperature,and heat release rate remarkably increased.Therefore,the optimal timing of the EIVC varied with different loads.The higher the load was,the earlier the best advance angle appeared.Therefore,the Miller cycle is an effective method for in-engine NO_(x) purification and does not entail significant cost.
文摘通过对一台增压汽油直喷(gasoline direct injection,GDI)发动机活塞和凸轮型线的重新设计实现了高压缩比米勒循环,并在此基础上引入了废气再循环(EGR),研究了不同压缩比米勒循环和EGR综合作用对发动机的性能影响。结果表明:增大压缩比和采用米勒循环技术对爆震影响存在取舍(trade-off)关系,低速全负荷下高压缩比米勒循环相比原机油耗略有上升;而低压冷EGR技术由于缸内稀释冷却作用可以优化燃烧相位,对外特性工况有效燃油消耗率有明显的改善作用;在部分负荷工况下,压缩比的增加和米勒燃烧循环可使油耗较原机下降6.3%,在整合低压冷EGR技术后,油耗进一步下降3.1%。可以得出结论,合理地增加压缩比,采用米勒循环技术并匹配低压冷EGR技术,可以大幅改善发动机的燃油经济性。