The Early Ordovician System is composed mainly of a series of carbonate platform deposits interbedded with shale and is especially characterized by a large number of organic reefs or buildups that occur widely in the ...The Early Ordovician System is composed mainly of a series of carbonate platform deposits interbedded with shale and is especially characterized by a large number of organic reefs or buildups that occur widely in the research area.The reefs have different thicknesses ranging from 0.5 m to 11.5 m and lengths varying from 1 m to 130 m.The reef-building organisms include Archaeoscyphia, Recepthaculitids,Batostoma,Cyanobacteria and Pulchrilamina.Through the research of characteristics of the reef-bearing strata of the Early Ordovician in the Yichang area,four sorts of biofacies are recognized,which are(1) shelly biofacies:containing Tritoechia-Pelmatozans community and Tritoechia-Pomatotrema community;(2) reef biofacies:including the Batostoma,Calathium-Archaeoscyphia, Pelmatozoa-Batostoma,Archeoscyphia and Calathium-Cyanobacteria communities; (3) standing-water biofacies:including the Acanthograptus-Dendrogptus and Yichangopora communities;and(4) allochthonous biofacies:containing Nanorthis-Psilocephlina taphocoense community.The analysis of sea-level changes indicates that there are four cycles of sea-level changes during the period when reef-bearing strata were formed in this area,and the development of reefs is obviously controlled by the velocity of sea-level changes and the growth of accommodation space.The authors hold that reefs were mostly formed in the high sea level periods.Because of the development of several subordinate cycles during the sea-level rising,the reefs are characterized by great quantity, wide distribution,thin thickness and small scale,which are similar to that of Juassic reefs in northern Tibet.The research on the evolution of communities shows that succession and replacement are the main forms.The former is favorable to the development of reefs and the latter indicates the disappearance of reefs.展开更多
Chitinozoans collected from upper Tremadocian to lower Floian strata of Chenjiahe section, Yichang, western Hubei, China comprise six species belonging respectively to the genera Euconochitina including a new species,...Chitinozoans collected from upper Tremadocian to lower Floian strata of Chenjiahe section, Yichang, western Hubei, China comprise six species belonging respectively to the genera Euconochitina including a new species, Euconochitina fenxiangensis, Lagenochitina and Bursachitina, together with Desmochitina sp. and Eremochitina sp. The chitinozoan succession across the interval is correlated with relevant conodont and chitinozoan biozones and two new regional chitinozoan biozones, the Lagenochitina destombesi Biozone and the Euconochitina symmetrica Biozone are proposed based on their stratigraphic ranges in the Fenxiang to Honghuayuan formations in the Chenjiahe section.展开更多
LA-ICP-MS zircon U-Pb isotopic dating and rock geochemical analysis were done of the Xarru granite in the middle section of the Yarlung Zangbo junction zone. Zircon 2-6pb/Z38u weighted mean ages of 474.9±2.3 and ...LA-ICP-MS zircon U-Pb isotopic dating and rock geochemical analysis were done of the Xarru granite in the middle section of the Yarlung Zangbo junction zone. Zircon 2-6pb/Z38u weighted mean ages of 474.9±2.3 and 478.3±1.7 Ma have been obtained for two gneiss granite samples respectively, which represent the formation age of the granite. This is the first discovery of the Early Ordovician magmatism in the Yarlung Zangbo junction zone. The rocks are high-K calcic-alkalic granite, contain tour- maline but not hornblende, with aluminum saturation index (ASI) of A/CNK〉I.1 (1.10-1.20), and are enriched in Rb, Th and U and relatively depleted in Ba, Nb, Sr, Zr, Ti and Eu. They are strongly peraluminous S-type granite, resulting from partial melting of argillaceous components in the crust in a syn-collisional setting. According to previous studies as well as the analy- sis in this paper, the formation of the Xarru granite is probably related to the Andean-type orogeny in the process of subduction of the Proto-Tethys Ocean towards the Gondwanaland, and it is a product of partial melting of the thickened upper crust as a result of collision between blocks or micro-blocks in the northern margin of the Gondwana supercontinent in the process of oceanic subduction. The Xarru granite is identified as the Early Ordovician granite, indicating that the wall rocks had probably formed in the Cambrian or Precambrian.展开更多
In the Early Ordovician Zhaogezhuang Section of Tangshan , North China, the Yeli Formation is composed of an entire third-order sequence, with facies ranging from the inner ramp restricted platform and open marine t...In the Early Ordovician Zhaogezhuang Section of Tangshan , North China, the Yeli Formation is composed of an entire third-order sequence, with facies ranging from the inner ramp restricted platform and open marine to the middle and even outer ramps. The Liangjiashan Formation is dominated by highstand system tracts (HST) with predominantly inner ramp grain-shoal and lagoon facies. Analyzing the carbon and oxygen isotope during the whole-rock carbonate reveals the 613C values in the Yeli Formation range from -7.11%o-0.76%o (PDB), with the mean value at -2.98%0, while the 6180 values range of-9.09%o- -4.65%o with the mean value at -6.12%o. The 613C values in the Liangjiashan Formation range of -1.15%o-0.3%o, and the mean value of -0.57%0; the 61SO values are -8.76%0- -7.48%0, and the mean value is -8.06%o. The 613C values in the Yeli Formation decrease, but at the bottom of the Liangjiashan Formation the values increase steadily. In the middle-upper formation, there is an extended fluctuation between 0- -1.00%o. The 613C trend in the studied section is similar to that of the contemporary sections, except that it has much lower 613C values and a more negative excursion. The correlation between the 613C changes and the eustatic events, as well as the sedimentary facies, indicates that in the Tangshan area, the carbon isotope evolution can be attributabled to the processes of the eutrophic sea/oligotrophic sea, the seafloor organism- mediated oxidation in shallow water and the organic reduction after maximum flooding. The changes in the carbon isotope contents were primarily affected by the regional relative sea level changes. Compared to the other coeval data, the Early Ordovician of the Tang shan area is also severely depleted in 180, with all of the 6180sample values being Delow 5%o, except for one sample with a value ot -4.02%0. Witlt the ancient sea- water having a 6180 value of-5.5%0 (SMOW), it is reasonable to delineate a temperature of less than 37 C.展开更多
This study provides an overview and discussion of controls on the distribution of organic reefs during the Early Ordovican Period, in the Yangtze Platform, a region of epicontinental sedimentary rocks in South China. ...This study provides an overview and discussion of controls on the distribution of organic reefs during the Early Ordovican Period, in the Yangtze Platform, a region of epicontinental sedimentary rocks in South China. The Yangtze Platform was located in low latitudes during the Early Ordovician and recorded rich and diverse reefs through that time. During the late Tremadocian Epoch, dolomitic and stratiform stromatolites were common in supratidal to intertidal zones of the western Yangtze Platform, while columnar stromatolites formed in deeper waters of the eastern Yangtze Platform. Skeletal-dominated reefs occurred in upper subtidal settings of the central Yangtze Platform. A transition from microbial-dominated to metazoan-dominated reefs with shallowing-upward cycles was evident, indicating that the composition of the main reef-builders was driven mainly by water depth.Increasing metazoan competition during the Great Ordovician Biodiversification Event reduced the abundance of microbial reefs. Sufficient nutrient supply is interpreted to have promoted development of skeletal-dominated reefs locally in shallow settings in the central Yangtze Platform, especially represented by the expansion of abundant solitary fossils of lithistid sponges and Calathium. High salinity environmental settings facilitated the bloom of stromatolites in near-shore locations. Low oxygen content in deep subtidal settings may have led to the absence of skeletal reefs in these habitats, so the mass occurrences of stromatolites was located in the shallower-water central and eastern platform. No keratose sponge-bearing stromatolite can be confirmed across the platform during this interval.展开更多
ObjectiveThe Himalaya terrain together with the ribbon terrains (e.g., Lhasa, Qiangtang, and Sibumasu blocks) of the Gondwana supercontinent has experienced episodic tectonic events since the Neoproterozoic. However...ObjectiveThe Himalaya terrain together with the ribbon terrains (e.g., Lhasa, Qiangtang, and Sibumasu blocks) of the Gondwana supercontinent has experienced episodic tectonic events since the Neoproterozoic. However, almost not any documentation with regard to the tectonic processes links the peri-Gondwana subduction between 510-480 Ma with the Carboniferous-Permian (-360-260 Ma) continental rifting event. This possible link is important for testing and formulating the tectonic model for the evolution of the present-day Himalayan orogenic belt, if we consider this belt has also experienced typical Wilson cycle plate tectonics. Recently, we have found several lines of evidence which imply that the Himalayan terrain and possibly other ribbon terrains of the eastern Gondwana have experienced unrecognized tectonic processes during the Late Ordovician to Early Silurian.展开更多
Quantitative lithofacies palaeogeography is an important discipline of palaeogeography.It is developed on the foundation of traditional lithofacies palaeogeography and palaeogeography,the core of which is the quantita...Quantitative lithofacies palaeogeography is an important discipline of palaeogeography.It is developed on the foundation of traditional lithofacies palaeogeography and palaeogeography,the core of which is the quantitative lithofacies palaeogeographic map.Quantity means that in the palaeogeographic map,the division and identification of each palaeogeographic unit are supported by quantitative data and quantitative fundamental maps.Our lithofacies palaeogeographic maps are quantitative or mainly quantitative.A great number of quantitative lithofacies palaeogeographic maps have been published,and articles and monographs of quantitative lithofacies palaeogeography have been published successively,thus the quantitative lithofacies palaeogeography was formed and established.It is an important development in lithofacies palaeogeography.In composing quantitative lithofacies palaeogeographic maps,the key measure is the single factor analysis and multifactor comprehensive mapping method—methodology of quantitative lithofacies palaeogeography.In this paper,the authors utilize two case studies,one from the Early Ordovician of South China and the other from the Early Ordovician of Ordos,North China,to explain how to use this methodology to compose the quantitative lithofacies palaeogeographic maps,and to discuss the palaeogeographic units in these maps.Finally,three characteristics,i.e.,quantification,multiple orders and multiple types,of quantitative lithofacies palaeogeographic maps are conclusively discussed.展开更多
基金supported by the National Natural Science Foundation of China(No.40972019)the S&T plan projects of Hubei Provincial Education Department(No. 03Z0105)+1 种基金the Project of Scientific and Technologic Development Planning of Jingzhou(No.20101P031-5)the Innovative Experimenting Plan of Undergraduate Students of China(No.091048934)
文摘The Early Ordovician System is composed mainly of a series of carbonate platform deposits interbedded with shale and is especially characterized by a large number of organic reefs or buildups that occur widely in the research area.The reefs have different thicknesses ranging from 0.5 m to 11.5 m and lengths varying from 1 m to 130 m.The reef-building organisms include Archaeoscyphia, Recepthaculitids,Batostoma,Cyanobacteria and Pulchrilamina.Through the research of characteristics of the reef-bearing strata of the Early Ordovician in the Yichang area,four sorts of biofacies are recognized,which are(1) shelly biofacies:containing Tritoechia-Pelmatozans community and Tritoechia-Pomatotrema community;(2) reef biofacies:including the Batostoma,Calathium-Archaeoscyphia, Pelmatozoa-Batostoma,Archeoscyphia and Calathium-Cyanobacteria communities; (3) standing-water biofacies:including the Acanthograptus-Dendrogptus and Yichangopora communities;and(4) allochthonous biofacies:containing Nanorthis-Psilocephlina taphocoense community.The analysis of sea-level changes indicates that there are four cycles of sea-level changes during the period when reef-bearing strata were formed in this area,and the development of reefs is obviously controlled by the velocity of sea-level changes and the growth of accommodation space.The authors hold that reefs were mostly formed in the high sea level periods.Because of the development of several subordinate cycles during the sea-level rising,the reefs are characterized by great quantity, wide distribution,thin thickness and small scale,which are similar to that of Juassic reefs in northern Tibet.The research on the evolution of communities shows that succession and replacement are the main forms.The former is favorable to the development of reefs and the latter indicates the disappearance of reefs.
文摘Chitinozoans collected from upper Tremadocian to lower Floian strata of Chenjiahe section, Yichang, western Hubei, China comprise six species belonging respectively to the genera Euconochitina including a new species, Euconochitina fenxiangensis, Lagenochitina and Bursachitina, together with Desmochitina sp. and Eremochitina sp. The chitinozoan succession across the interval is correlated with relevant conodont and chitinozoan biozones and two new regional chitinozoan biozones, the Lagenochitina destombesi Biozone and the Euconochitina symmetrica Biozone are proposed based on their stratigraphic ranges in the Fenxiang to Honghuayuan formations in the Chenjiahe section.
基金supported by China Geologi-cal Survey Project(Grant No.1212011086039)
文摘LA-ICP-MS zircon U-Pb isotopic dating and rock geochemical analysis were done of the Xarru granite in the middle section of the Yarlung Zangbo junction zone. Zircon 2-6pb/Z38u weighted mean ages of 474.9±2.3 and 478.3±1.7 Ma have been obtained for two gneiss granite samples respectively, which represent the formation age of the granite. This is the first discovery of the Early Ordovician magmatism in the Yarlung Zangbo junction zone. The rocks are high-K calcic-alkalic granite, contain tour- maline but not hornblende, with aluminum saturation index (ASI) of A/CNK〉I.1 (1.10-1.20), and are enriched in Rb, Th and U and relatively depleted in Ba, Nb, Sr, Zr, Ti and Eu. They are strongly peraluminous S-type granite, resulting from partial melting of argillaceous components in the crust in a syn-collisional setting. According to previous studies as well as the analy- sis in this paper, the formation of the Xarru granite is probably related to the Andean-type orogeny in the process of subduction of the Proto-Tethys Ocean towards the Gondwanaland, and it is a product of partial melting of the thickened upper crust as a result of collision between blocks or micro-blocks in the northern margin of the Gondwana supercontinent in the process of oceanic subduction. The Xarru granite is identified as the Early Ordovician granite, indicating that the wall rocks had probably formed in the Cambrian or Precambrian.
基金supported by the National Natural Science Foundation of China(No.41372039)
文摘In the Early Ordovician Zhaogezhuang Section of Tangshan , North China, the Yeli Formation is composed of an entire third-order sequence, with facies ranging from the inner ramp restricted platform and open marine to the middle and even outer ramps. The Liangjiashan Formation is dominated by highstand system tracts (HST) with predominantly inner ramp grain-shoal and lagoon facies. Analyzing the carbon and oxygen isotope during the whole-rock carbonate reveals the 613C values in the Yeli Formation range from -7.11%o-0.76%o (PDB), with the mean value at -2.98%0, while the 6180 values range of-9.09%o- -4.65%o with the mean value at -6.12%o. The 613C values in the Liangjiashan Formation range of -1.15%o-0.3%o, and the mean value of -0.57%0; the 61SO values are -8.76%0- -7.48%0, and the mean value is -8.06%o. The 613C values in the Yeli Formation decrease, but at the bottom of the Liangjiashan Formation the values increase steadily. In the middle-upper formation, there is an extended fluctuation between 0- -1.00%o. The 613C trend in the studied section is similar to that of the contemporary sections, except that it has much lower 613C values and a more negative excursion. The correlation between the 613C changes and the eustatic events, as well as the sedimentary facies, indicates that in the Tangshan area, the carbon isotope evolution can be attributabled to the processes of the eutrophic sea/oligotrophic sea, the seafloor organism- mediated oxidation in shallow water and the organic reduction after maximum flooding. The changes in the carbon isotope contents were primarily affected by the regional relative sea level changes. Compared to the other coeval data, the Early Ordovician of the Tang shan area is also severely depleted in 180, with all of the 6180sample values being Delow 5%o, except for one sample with a value ot -4.02%0. Witlt the ancient sea- water having a 6180 value of-5.5%0 (SMOW), it is reasonable to delineate a temperature of less than 37 C.
基金supported by the China Geological Survey Project (Grant No.DD2019823)the Natural Science Foundation of China (Grant No. 41702003)+1 种基金the Youth Innovation Promotion Association of CAS (2019310)the special fund for strategic pilot technology Chinese Academy of Sciences(Type B, Grant No. XDB26000000)。
文摘This study provides an overview and discussion of controls on the distribution of organic reefs during the Early Ordovican Period, in the Yangtze Platform, a region of epicontinental sedimentary rocks in South China. The Yangtze Platform was located in low latitudes during the Early Ordovician and recorded rich and diverse reefs through that time. During the late Tremadocian Epoch, dolomitic and stratiform stromatolites were common in supratidal to intertidal zones of the western Yangtze Platform, while columnar stromatolites formed in deeper waters of the eastern Yangtze Platform. Skeletal-dominated reefs occurred in upper subtidal settings of the central Yangtze Platform. A transition from microbial-dominated to metazoan-dominated reefs with shallowing-upward cycles was evident, indicating that the composition of the main reef-builders was driven mainly by water depth.Increasing metazoan competition during the Great Ordovician Biodiversification Event reduced the abundance of microbial reefs. Sufficient nutrient supply is interpreted to have promoted development of skeletal-dominated reefs locally in shallow settings in the central Yangtze Platform, especially represented by the expansion of abundant solitary fossils of lithistid sponges and Calathium. High salinity environmental settings facilitated the bloom of stromatolites in near-shore locations. Low oxygen content in deep subtidal settings may have led to the absence of skeletal reefs in these habitats, so the mass occurrences of stromatolites was located in the shallower-water central and eastern platform. No keratose sponge-bearing stromatolite can be confirmed across the platform during this interval.
基金supported by the National Science Foundation of China(grants No.41425010,41503023 and 41273034)China Geological Survey(grant No.12120115027101)+1 种基金Special Fund for Scientific Research in the Public Welfare(grant No.201511022)the Outlay Research Fund of Institute of Geology(grant No.J1516)
文摘ObjectiveThe Himalaya terrain together with the ribbon terrains (e.g., Lhasa, Qiangtang, and Sibumasu blocks) of the Gondwana supercontinent has experienced episodic tectonic events since the Neoproterozoic. However, almost not any documentation with regard to the tectonic processes links the peri-Gondwana subduction between 510-480 Ma with the Carboniferous-Permian (-360-260 Ma) continental rifting event. This possible link is important for testing and formulating the tectonic model for the evolution of the present-day Himalayan orogenic belt, if we consider this belt has also experienced typical Wilson cycle plate tectonics. Recently, we have found several lines of evidence which imply that the Himalayan terrain and possibly other ribbon terrains of the eastern Gondwana have experienced unrecognized tectonic processes during the Late Ordovician to Early Silurian.
文摘Quantitative lithofacies palaeogeography is an important discipline of palaeogeography.It is developed on the foundation of traditional lithofacies palaeogeography and palaeogeography,the core of which is the quantitative lithofacies palaeogeographic map.Quantity means that in the palaeogeographic map,the division and identification of each palaeogeographic unit are supported by quantitative data and quantitative fundamental maps.Our lithofacies palaeogeographic maps are quantitative or mainly quantitative.A great number of quantitative lithofacies palaeogeographic maps have been published,and articles and monographs of quantitative lithofacies palaeogeography have been published successively,thus the quantitative lithofacies palaeogeography was formed and established.It is an important development in lithofacies palaeogeography.In composing quantitative lithofacies palaeogeographic maps,the key measure is the single factor analysis and multifactor comprehensive mapping method—methodology of quantitative lithofacies palaeogeography.In this paper,the authors utilize two case studies,one from the Early Ordovician of South China and the other from the Early Ordovician of Ordos,North China,to explain how to use this methodology to compose the quantitative lithofacies palaeogeographic maps,and to discuss the palaeogeographic units in these maps.Finally,three characteristics,i.e.,quantification,multiple orders and multiple types,of quantitative lithofacies palaeogeographic maps are conclusively discussed.