Based on the chronological data and relevant geological evidence, the chronological framework of the major geological events of the granulite terrain in northwestern Hebei Province and its adjacent areas has been esta...Based on the chronological data and relevant geological evidence, the chronological framework of the major geological events of the granulite terrain in northwestern Hebei Province and its adjacent areas has been established. Basic lava eruption occurred in the span of 2868-2932 Ma, resulting in the formation of the early crust. The TTG magma emplacement took place c.2761 Ma ago. Subsequently basic magma intruded into the supracrustal rocks at 2650 Ma, resulting in crustal thickening. The thickening was enhanced at 2561-2503 Ma by the widespread intrusions of granodioritic magma. In the period of 2477-2461 Ma charnockite intruded, accompanied by regional granulite facies metamorphism. The second stage of granulite facies metamorphism occurred c. 2300 Ma ago, and finally pink granite intrusions at 2144-2087 Ma resulted in the formation of a granite zone.展开更多
Charnockite and granulite in Yishui area, Shandong Province are located in the middle part of the Tancheng Lujiang fault zone, eastern China. Field studies have shown that the charnockites, derived from the adjacent ...Charnockite and granulite in Yishui area, Shandong Province are located in the middle part of the Tancheng Lujiang fault zone, eastern China. Field studies have shown that the charnockites, derived from the adjacent granulites, are classified as three types: enderbite, garnet enderbite and hypersthene trondhjemite. In addition, two generations of minerals are present in the charnockites: the relic minerals such as garnet, hypersthene and clinopyroxene, and the neocrystallized minerals such as plagioclase and K feldspar. The relic minerals occurring in the granulite facies stage were affected by the later partial melting. The relic minerals, irregular and usually ragged in shape, occupy the interstitial positions in the neocrystalline minerals. The neocrystalline minerals are usually euhedral subhedral crystals. The study of petrology, mineralogy and geochemistry of charnokites concludes that the enderbite was formed by the anatexis of the two pyroxene plagioclase granulite, that the garnet enderbite was formed by the anatexis of sillimanite garnet gneiss, and that the hypersthene trondhjemite was formed by the anatexis of the leucocratic two pyroxene plagioclase granulite. The U Pb dating of the zircon indicates that the formation of the charnockite and granulite was related to the Archean Proterozoic upwelling of a mantle plume (hot spot) around 2 500 Ma, in Yishui area, Shandong Province.展开更多
This paper carried out a study on U--Th--Pb behavior of zircons in a "dry" rock system during high-grade metamorphism in the Archean basement of eastern Sbandong. The studied sample has a mineral assemblage of plagi...This paper carried out a study on U--Th--Pb behavior of zircons in a "dry" rock system during high-grade metamorphism in the Archean basement of eastern Sbandong. The studied sample has a mineral assemblage of plagioclase + K-feldspar + clinopyroxene + biotite + quartz and its pro- tolith is considered to be diorite. The zircons are stubby, equant or irregular in shape and show fir-leaf, sectorial, banded or oscillatory zoning. They contain inclusions, including mineral assemblages of clinopyroxene + orthopyroxene + hornblende + quartz and plagioclase + K-feldspar + biotite + quartz. Fifty SHRIMP analyses were performed on 34 zircon grains, which commonly yielded high Th/U ratios (mostly 〉0.5). Most analyses are distributed along concordia from 2.54 to 2.25 Ga, with the youngest age being - 1.95 Ga. Compositions and ages show large variations even in a same zircon grain. Combined with early studies, conclusions can be drawn as follows: 1) the diorite underwent two episodes of high-grade metamorphism, at the end of the Neoarchean and the Paleoproterozoic (-2.50 Ga and 1.95 Ga or slightly later); 2) high-grade metamorphism in a "dry" rock system may partially reset the U--Th--Pb system of zircons and, in this case, the ages between the oldest and youngest are chronologically meaningless; and 3) high Th/U ratios may be common features of zircons formed during high-grade metamorphic conditions.展开更多
文摘Based on the chronological data and relevant geological evidence, the chronological framework of the major geological events of the granulite terrain in northwestern Hebei Province and its adjacent areas has been established. Basic lava eruption occurred in the span of 2868-2932 Ma, resulting in the formation of the early crust. The TTG magma emplacement took place c.2761 Ma ago. Subsequently basic magma intruded into the supracrustal rocks at 2650 Ma, resulting in crustal thickening. The thickening was enhanced at 2561-2503 Ma by the widespread intrusions of granodioritic magma. In the period of 2477-2461 Ma charnockite intruded, accompanied by regional granulite facies metamorphism. The second stage of granulite facies metamorphism occurred c. 2300 Ma ago, and finally pink granite intrusions at 2144-2087 Ma resulted in the formation of a granite zone.
基金This study is supported by the Research Fund forthe Doctoral Pro- gram of Higher Education( No.970 4910 4)
文摘Charnockite and granulite in Yishui area, Shandong Province are located in the middle part of the Tancheng Lujiang fault zone, eastern China. Field studies have shown that the charnockites, derived from the adjacent granulites, are classified as three types: enderbite, garnet enderbite and hypersthene trondhjemite. In addition, two generations of minerals are present in the charnockites: the relic minerals such as garnet, hypersthene and clinopyroxene, and the neocrystallized minerals such as plagioclase and K feldspar. The relic minerals occurring in the granulite facies stage were affected by the later partial melting. The relic minerals, irregular and usually ragged in shape, occupy the interstitial positions in the neocrystalline minerals. The neocrystalline minerals are usually euhedral subhedral crystals. The study of petrology, mineralogy and geochemistry of charnokites concludes that the enderbite was formed by the anatexis of the two pyroxene plagioclase granulite, that the garnet enderbite was formed by the anatexis of sillimanite garnet gneiss, and that the hypersthene trondhjemite was formed by the anatexis of the leucocratic two pyroxene plagioclase granulite. The U Pb dating of the zircon indicates that the formation of the charnockite and granulite was related to the Archean Proterozoic upwelling of a mantle plume (hot spot) around 2 500 Ma, in Yishui area, Shandong Province.
基金supported by the Key Program of the Ministry of Land and Resources of China(Grant Nos.1212010811033, 1212010711815)
文摘This paper carried out a study on U--Th--Pb behavior of zircons in a "dry" rock system during high-grade metamorphism in the Archean basement of eastern Sbandong. The studied sample has a mineral assemblage of plagioclase + K-feldspar + clinopyroxene + biotite + quartz and its pro- tolith is considered to be diorite. The zircons are stubby, equant or irregular in shape and show fir-leaf, sectorial, banded or oscillatory zoning. They contain inclusions, including mineral assemblages of clinopyroxene + orthopyroxene + hornblende + quartz and plagioclase + K-feldspar + biotite + quartz. Fifty SHRIMP analyses were performed on 34 zircon grains, which commonly yielded high Th/U ratios (mostly 〉0.5). Most analyses are distributed along concordia from 2.54 to 2.25 Ga, with the youngest age being - 1.95 Ga. Compositions and ages show large variations even in a same zircon grain. Combined with early studies, conclusions can be drawn as follows: 1) the diorite underwent two episodes of high-grade metamorphism, at the end of the Neoarchean and the Paleoproterozoic (-2.50 Ga and 1.95 Ga or slightly later); 2) high-grade metamorphism in a "dry" rock system may partially reset the U--Th--Pb system of zircons and, in this case, the ages between the oldest and youngest are chronologically meaningless; and 3) high Th/U ratios may be common features of zircons formed during high-grade metamorphic conditions.