Heat stress is a major constraint to current and future maize production at the global scale.Male and female reproductive organs both play major roles in increasing seed set under heat stress at flowering,but their re...Heat stress is a major constraint to current and future maize production at the global scale.Male and female reproductive organs both play major roles in increasing seed set under heat stress at flowering,but their relative contributions to seed set are unclear.In this study,a 2-year field experiment including three sowing dates in each year and 20 inbred lines was conducted.Seed set,kernel number per ear,and grain yield were all reduced by more than 80%in the third sowing dates compared to the first sowing dates.Pollen viability,silk emergence ratio,and anthesis-silking interval were the key determinants of seed set under heat stress;and their correlation coefficients were 0.89^(***),0.65^(***),and-0.72^(***),respectively.Vapor pressure deficit(VPD)and relative air humidity(RH)both had significant correlations with pollen viability and the silk emergence ratio.High RH can alleviate the impacts of heat on maize seed set by maintaining high pollen viability and a high silk emergence ratio.Under a warming climate from 2020 to 2050,VPD will decrease due to the increased RH.Based on their pollen viability and silk emergence ratios,the 20 genotypes fell into four different groups.The group with high pollen viability and a high silk emergence ratio performed better under heat stress,and their performance can be further improved by combining the improved flowering pattern traits.展开更多
Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based compos...Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based composites were compared with adding different silica gel particle size and proportion.The morphological characteristics,the isothermal equilibrium moisture content curve,moisture absorption and desorption rate,moisture absorption and desorption stability,and humidity-conditioning performance were tested and analyzed.The experimental results show that,compared with pure-gypsum,the surface structure of the gypsum-based composites is relatively loose,the quantity,density and aperture of the pores in the structure increase.The absorption and desorption capacity increase along with the increase of silica gel particle size and silica gel proportion.When 3 mm silica gel particle size is added with a mass ratio of 40%,the maximum equilibrium moisture content of humidity-controlling composites is 0.161 g/g at 98% relative humidity(RH),3.22 times that of pure-gypsum.The moisture absorption and desorption rates are increased,the equilibrium moisture absorption and desorption rates are 2.68 times and 1.61 times that of pure-gypsum at 58.5% RH,respectively.The gypsum-based composites have a good stability,which has better timely response to dynamic humidity changes and can effectively regulate indoor humidity under natural conditions.展开更多
The production and utilization of high-energetic explosives often pose a range of safety hazards,with sensitivity being a key factor in evaluating these risks.To investigate how temperature,particle size,and air humid...The production and utilization of high-energetic explosives often pose a range of safety hazards,with sensitivity being a key factor in evaluating these risks.To investigate how temperature,particle size,and air humidity affect the responsiveness of commonly used high-energetic explosives,a series of BAM(Bundesanstalt für Materialforschung und-prüfung)impact and friction sensitivity tests were carried out to determine the critical impact energy and critical load pressure of four representative high-energetic explosives(RDX,HMX,PETN and CL-20)under different temperatures,particle sizes,and air humidity conditions.The experimental findings facilitated an examination of temperature and particle size affecting the sensitivity of high-energetic explosives,along with an assessment of the influence of air humidity on sensitivity testing.The results clearly indicate that high-energetic explosives display a substantial decline in critical reaction energy when subjected to micrometre-sized particles and an air humidity level of 45%at a temperature of 90℃.Furthermore,it was noted that the critical reaction energy of high-energetic explosives diminishes with an increase in temperature within 25℃−90℃.In the same vein,as the particle sizes of high-energetic explosives increase,so does the critical reaction energy for micrometre-sized particles.High air humidity significantly affects the sensitivity testing of high-energetic explosives,emphasizing the importance of refraining from conducting sensitivity tests in such conditions.展开更多
In the preparation of a series of Ce_(0.8)Zr_(0.2)O_(y)catalysts catalyzing the removal of formaldehyde,BET,H2-TPR,IR,SEM,XPS,and XRD were used to characterize the catalyst,and the influence of humidity on the catalys...In the preparation of a series of Ce_(0.8)Zr_(0.2)O_(y)catalysts catalyzing the removal of formaldehyde,BET,H2-TPR,IR,SEM,XPS,and XRD were used to characterize the catalyst,and the influence of humidity on the catalyst activity was studied by adjusting the humidity during the process.The experimental results showed that the formaldehyde removal rate increased with the increase of humidity.When the humidity was higher than 50%,the formaldehyde removal rate decreased by 3%over that when the humidity was 50%.The characterization results showed that humidity facilitated the activation of oxygen and the formation of hydroxyl groups,which both promoted the formation and oxidative decomposition of intermediates and prevented the deposition of intermediates that clogged the pores,allowing more formaldehyde to be adsorbed and oxidized,which increased the activity of the catalyst.This provides new mechanistic evidence for the oxidation of formaldehyde and helps in the development of relatively low-cost materials for formaldehyde purification.展开更多
This study aims to quantify the susceptibility of granular materials used in pavements to changes in moisture content and propose a correlation model to incorporate this susceptibility into seasonal analyses.The fines...This study aims to quantify the susceptibility of granular materials used in pavements to changes in moisture content and propose a correlation model to incorporate this susceptibility into seasonal analyses.The fines content and the percentage of fractured coarse aggregates were identified as direct indicators of the resilient modulus susceptibility to changes in water content.The results showed that the percentage of fractured coarse aggregates particles(FR)has a more significant impact on the resilient modulus(Er)of crushed granular materials used in pavement construction than the combined indicator of the fines content and sample volumetrics(nf).Crushed granular materials with a higher percentage of fractured coarse aggregates are relatively insensitive to changes in the degree of saturation,but become more sensitive as the fine fraction porosity decreases.An adjusted model was proposed based on the existing formulation,but considers a complex parameter to describe and adjust the sensitivity of base granular materials to variations in moisture content with respect to fabrication charac-teristics,fines content and volumetric properties.The model shows that the variation of Er values is below10%for fully crushed granular materials.However,it reaches approximately±12%for materials with 75%of crushed coarse aggregates andþ40%and-25%for materials with FR=50%.This model could help select good ag-gregates characteristics and adjust grain-size distribution for environments where significant moisture content variations can occur in the pavement system,such as in the Province of Quebec(Canada).As it is based on pa-rameters that can be easily determined or estimated,it also represents a valuable tool for detailed design and analysis that can consider material characteristics.展开更多
Many attempts have been made to estimate calorific value of bagasse using mathematical equations, which were created based on data from proximate, ultimate, physical and chemical analysis. Questions have been raised o...Many attempts have been made to estimate calorific value of bagasse using mathematical equations, which were created based on data from proximate, ultimate, physical and chemical analysis. Questions have been raised on the applicability of these equations in different parts of the globe. This study was initiated to tackle these problems and also check the most suited mathematical models for the Law Heating Value of Cameroonian bagasse. Data and bagasse samples were collected at the Cameroonian sugarcane factory. The effects of cane variety, age of harvesting, source, moisture content, and sucrose on the LHV of Cameroon bagasse have been tested. It was shown that humidity does not change within a variety, but changes from the dry season to the rainy season;the sugar in the rainy season is significantly different from that collected in the dry season. Samples of the same variety have identical LHV. LHV in the dry season is significantly different from LHV in the rainy season. According to the fact that this study was done for cane with different ages of harvesting, the maturity of Cameroonian sugarcane does not affect LHV of bagasse. Tree selected models are much superior tool for the prediction of the LHV for bagasse in Cameroon compared to others. The standard deviation of these validated models is around 200 kJ/kg compared to the experimental. Thus, the models determined in foreign countries, are not necessarily applicable in predicting the LHV of bagasse in other countries with the same accuracy as that in their native country. There was linear relationship between humidity, ash and sugar content in the bagasse. It is possible to build models based on data from physical composition of bagasse using regression analysis.展开更多
Flexible and wearable humidity sensors play a vital role in daily point-of-care diagnosis and noncontact human-machine interactions.However,achieving a facile and high-speed fabrication approach to realizing flexible ...Flexible and wearable humidity sensors play a vital role in daily point-of-care diagnosis and noncontact human-machine interactions.However,achieving a facile and high-speed fabrication approach to realizing flexible humidity sensors remains a challenge.In this work,a wearable capacitive-type Ga_(2)O_(3)/liquid metal-based humidity sensor is demonstrated by a one-step laser direct writing technique.Owing to the photothermal effect of laser,the Ga_(2)O_(3)-wrapped liquid metal particles can be selectively sintered and converted from insulative to conductive traces with a resistivity of 0.19Ω·cm,while the untreated regions serve as active sensing layers in response to moisture changes.Under 95%relative humidity,the humidity sensor displays a highly stable performance along with rapid response and recover time.Utilizing these superior properties,the Ga_(2)O_(3)/liquid metal-based humidity sensor is able to monitor human respiration rate,as well as skin moisture of the palm under different physiological states for healthcare monitoring.展开更多
Human metabolite moisture detection is important in health monitoring and non-invasive diagnosis.However,ultra-sensitive quantitative extraction of respiration information in real-time remains a great challenge.Herein...Human metabolite moisture detection is important in health monitoring and non-invasive diagnosis.However,ultra-sensitive quantitative extraction of respiration information in real-time remains a great challenge.Herein,chemiresistors based on imine-linked covalent organic framework(COF)films with dual-active sites are fabricated to address this issue,which demonstrates an amplified humidity-sensing signal performance.By regulation of monomers and functional groups,these COF films can be pre-engineered to achieve high response,wide detection range,fast response,and recovery time.Under the condition of relative humidity ranging from 13 to 98%,the COFTAPB-DHTA film-based humidity sensor exhibits outstanding humidity sensing perfor-mance with an expanded response value of 390 times.Furthermore,the response values of the COF film-based sensor are highly linear to the relative humidity in the range below 60%,reflecting a quantitative sensing mechanism at the molecular level.Based on the dual-site adsorption of the(-C=N-)and(C-N)stretching vibrations,the revers-ible tautomerism induced by hydrogen bonding with water molecules is demonstrated to be the main intrinsic mechanism for this effective humidity detection.In addition,the synthesized COF films can be further exploited to effectively detect human nasal and oral breathing as well as fabric permeability,which will inspire novel designs for effective humidity-detection devices.展开更多
Breathing is an inherent human activity;however,the composition of the air we inhale and gas exhale remains unknown to us.To address this,wearable vapor sensors can help people monitor air composition in real time to ...Breathing is an inherent human activity;however,the composition of the air we inhale and gas exhale remains unknown to us.To address this,wearable vapor sensors can help people monitor air composition in real time to avoid underlying risks,and for the early detection and treatment of diseases for home healthcare.Hydrogels with three-dimensional polymer networks and large amounts of water molecules are naturally flexible and stretchable.Functionalized hydrogels are intrinsically conductive,self-healing,self-adhesive,biocompatible,and room-temperature sensitive.Compared with traditional rigid vapor sensors,hydrogel-based gas and humidity sensors can directly fit human skin or clothing,and are more suitable for real-time monitoring of personal health and safety.In this review,current studies on hydrogel-based vapor sensors are investigated.The required properties and optimization methods of wearable hydrogel-based sensors are introduced.Subsequently,existing reports on the response mechanisms of hydrogel-based gas and humidity sensors are summarized.Related works on hydrogel-based vapor sensors for their application in personal health and safety monitoring are presented.Moreover,the potential of hydrogels in the field of vapor sensing is elucidated.Finally,the current research status,challenges,and future trends of hydrogel gas/humidity sensing are discussed.展开更多
The environment significantly impacts the interaction between plants and pathogens,thus remarkably affecting crop disease occurrence.However,the detailed combined mechanisms of temperature and humidity influencing thi...The environment significantly impacts the interaction between plants and pathogens,thus remarkably affecting crop disease occurrence.However,the detailed combined mechanisms of temperature and humidity influencing this interaction remain unclear.In this study,the interaction between tomato and Botrytis cinerea in various temperature and humidity conditions was analyzed by histological observation and a dual RNA-seq approach.Results showed that low humidity was not favorable for mycelial growth,resulting in infection failure.Both high and low temperatures at high humidity successfully inhibited pathogenic infection and disease incidence in the tomato plants,thus enhancing their resistance to B.cinerea.The high temperature and high humidity(HH)treatment induced the upregulation of light reaction genes,increased the net photosynthetic rate,and expanded the chloroplast morphology of infected tomatoes.The HH treatment also inhibited the expression of cell cycle-related genes of B.cinerea,interfered with conidial germination andmycelial growth,and damagedmycelial cell structure.Lowtemperature and high humidity(LH)treatment induced the expression of cell wall modification genes and remodeled the cell wall morphology of tomatoes in response to B.cinerea.In addition,the downregulated fungal catabolic genes and the abnormal increase in electron density ofmycelial cells under LH treatment subsequently reduced the infection ability of B.cinerea.These results further explain the coupled effects of temperature and humidity on plant defenses and pathogen virulence,and provide a potential means to control gray mold.展开更多
Humidity can affect the attenuation of MEA(membrane electrode assembly), however, the relationship between humidity and MEA decays is complex and ambiguous in realistic application. Herein, we design a simulating auto...Humidity can affect the attenuation of MEA(membrane electrode assembly), however, the relationship between humidity and MEA decays is complex and ambiguous in realistic application. Herein, we design a simulating automotive protocol, performed on five single fuel cells under RH(relative humidity) 100%,RH 80%, RH 64%, and RH 40%, RH 10%, respectively, to study the relationship of MEA decays and humidity and suggest optimized humidity range to extend the durability. With the electrochemical impedance spectroscopy, cyclic voltammetry, X-ray fluorescence, X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, the four degradation mechanisms about catalyst layer, including Pt dissolution, Pt coarsening, carbon corrosion and ionomer degradation, are observed. Pt coarsening and carbon corrosion are accelerated by higher water content at high humidity. Ionomer degradation and Pt dissolution are enhanced in low humidity. With the linear sweep voltammetry, ion chromatography,nuclear magnetic resonance, tensile test and scan electron microscope, chemical and mechanical degradation in proton exchange membrane are all observed in these five fuels. Chemical degradation, characterized by membrane thinning and more fluoride loss, occurred markedly in RH 10%. Mechanical degradation, characterized by the non-uniformity thickness and bad mechanical properties, is more pronounced in RH 100%, RH 80%, RH 64%. These two degradations are in a moderate level in RH 40%. The research suggests that the RH range from 64% to 40% is conductive to mitigate the degradation of MEAs operated in automotive applications.展开更多
The development of microbial-based products requires certain criteria for them to be successfully commercialized. The product must meet the following desirable criteria: effectiveness, contamination free, stability, c...The development of microbial-based products requires certain criteria for them to be successfully commercialized. The product must meet the following desirable criteria: effectiveness, contamination free, stability, cost-effectiveness, and a prolonged shelf life. Controlling the drying process is crucial for ensuring the stability and durability of the product. The traditional approach, which involved mechanical and natural drying, led to decreased productivity and quality. The objective of this research endeavour was to achieve a dry process enhancement while preserving the microbial quality of Trichoderma asperellum (M103). The temperature and relative humidity during the drying period were monitored under two conditions: with and without a dehumidifier. The results demonstrate that the dehumidifier increases drying period efficiency by up to 63%.展开更多
Background: Although a number of studies have reported that the hot and humid compress from traditional Chinese medicine (TCM) is effective in treating lumbar disc herniation (LDH) with qi stagnation and blood stasis,...Background: Although a number of studies have reported that the hot and humid compress from traditional Chinese medicine (TCM) is effective in treating lumbar disc herniation (LDH) with qi stagnation and blood stasis, clinical evidence is limited. Objective: The purpose of this study is to provide high-quality evidence to support the effectiveness of the traditional Chinese hot and humid compress in the treatment of LDH with qi stagnation and blood stasis. Methods: From October 2021 to November 2023, 86 patients with LDH of qi stagnation and blood stasis type were recruited in our hospital and divided into a control (n = 43) and an observation group (n = 43) according to the random number table method. The control group was given routine clinical treatment, and the observation group was treated with the hot and humid compress therapy for two weeks. The visual analogue scale (VAS) score, Japanese Orthopaedic Association (JOA) score, TCM syndrome score, serum interleukin-6 (IL-6), serum interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) were observed and compared between the two groups before and after treatment, and the clinical efficacy of the two groups was evaluated. Results: After treatment, the VAS score, TCM symptom score, and serum IL-6, IL-1β, and TNF-α levels decreased in both groups (P P P P P Conclusions: The hot and humid compress of traditional Chinese medicine can effectively relieve pain, restore lumbar function, improve TCM syndromes, reduce the level of inflammatory factors, and have a curative effect in treating LDH.展开更多
Under the condition of high temperature, the effects of five cover patterns (clean tillage, film mulching, weed covering, branches and leaves covering and growing grass covering) on soil properties in young Phoebe b...Under the condition of high temperature, the effects of five cover patterns (clean tillage, film mulching, weed covering, branches and leaves covering and growing grass covering) on soil properties in young Phoebe boumei forest were in- vestigated. The results showed that the five cover patterns all showed significant ef- fects on soil properties in young Phoebe bournei forest under the condition of high temperature. Land cover increased land temperature in Phoebe boumei forest. Un- der the film mulching, the land temperature was increased most rapidly with the largest increment. However, weed covering, branches and leaves covering and growing grass covering decreased land temperature. Among them, growing grass covering showed the best cooling effect. The film mulching, weed covering, branch- es and leaves covering and growing grass covering all increased land humidity. The film mulching showed the best moisture-preserving effect in the early period, but in the late period, the humidity in the film mulching treatment group was lower than that in the clean tillage treatment group. Among the five mulching patterns, moisture loss in the film mulching treatment group was slowest and least, followed by those in the weed covering and branches and leaves covering treatment groups, and moisture loss in the growing grass covering treatment group was fastest and most.展开更多
By using the daily average relative humidity data in Urumqi during 1961-2000,the basic climate characteristics and the variation trend of relative humidity in Urumqi in recent 40 years were analyzed.The results showed...By using the daily average relative humidity data in Urumqi during 1961-2000,the basic climate characteristics and the variation trend of relative humidity in Urumqi in recent 40 years were analyzed.The results showed that the yearly average relative humidity in Urumqi was 57.5%.The relative humidity in winter was 77.5% which was the biggest all the year round,and the relative humidity in summer was 41.2% which was the smallest.The relative humidity in spring,summer,autumn,winter and the yearly relative humidity all displayed the increase trend.The yearly mean relative humidity had the periods of mainly 2,3-4 and quasi-7 years.The periodic oscillation of quasi-7 years was the strongest.展开更多
In order to analyze the ventilation and cooling performance of single-tunnel plastic greenhouse in Yangtze-Huai region, the effects of two different ventilation modes (side window, side window+roof window) on the t...In order to analyze the ventilation and cooling performance of single-tunnel plastic greenhouse in Yangtze-Huai region, the effects of two different ventilation modes (side window, side window+roof window) on the temperature and humidity of plastic greenhouse were studied. The results showed that the ventilation mode of opening side window and roof window could effectively reduce the temperature and humidity at the plant canopy height, which was conducive to the growth of plant in greenhouse.展开更多
Effects of pressure and temperature in the chamber during vacuum drying on the relative humidity and evaporation of wood surface were investigated by using the vacuum chamber. The setting temperature during vacuum dry...Effects of pressure and temperature in the chamber during vacuum drying on the relative humidity and evaporation of wood surface were investigated by using the vacuum chamber. The setting temperature during vacuum drying included dry-bulb temperature ta, the wet-bulb temperature tw and the temperature difference between the air in the vacuum chamber and the cooling water in the condenser. Results indicated that relative humidity during vacuum drying was affected by the dry-bulb temperature td, the wet-bulb temperature tw and the temperature difference between the air in the vacuum chamber and the water in the condenser. Relative humidity of wood decreased with the increase in temperature at the given temperature of the water in the condenser. The relative humidity was affected slightly by pressure in the vacuum chamber pA, and it decreased from 70% to 65% with pA increased from 50 kPa to 101 kPa. Moreover, there was nearly no evaporation under the vacuum without external heating.展开更多
Children's English learning in China attracts more and more people's attention and is on the tendency of starting at an early age. Under the trend of "learning English from childhood", the author has...Children's English learning in China attracts more and more people's attention and is on the tendency of starting at an early age. Under the trend of "learning English from childhood", the author has explored the Critical Period Hypothesis and discussed the younger learners' disadvantages and older learners' advantages when learning English. and concludes that early-age English learning is not feasible.展开更多
基金supported by the Performance Incentive and Guidance Project for Scientific Research Institutions,China(cstc2022jxjl80028)the General Project of Chongqing Natural Science Foundation,China(cstc2021jcyj-msxmX0747)+2 种基金the Youth Innovation Team Project of Chongqing Academy of Agricultural Sciences,China(NKY-2018QC02)the Jiangjin Experimental Station of National Germplasm Resources Observation,China(NAES025GR05)the Chongqing Technical Innovation and Application Development Special Project,China(CSTB2022T1AD-KPX0008).
文摘Heat stress is a major constraint to current and future maize production at the global scale.Male and female reproductive organs both play major roles in increasing seed set under heat stress at flowering,but their relative contributions to seed set are unclear.In this study,a 2-year field experiment including three sowing dates in each year and 20 inbred lines was conducted.Seed set,kernel number per ear,and grain yield were all reduced by more than 80%in the third sowing dates compared to the first sowing dates.Pollen viability,silk emergence ratio,and anthesis-silking interval were the key determinants of seed set under heat stress;and their correlation coefficients were 0.89^(***),0.65^(***),and-0.72^(***),respectively.Vapor pressure deficit(VPD)and relative air humidity(RH)both had significant correlations with pollen viability and the silk emergence ratio.High RH can alleviate the impacts of heat on maize seed set by maintaining high pollen viability and a high silk emergence ratio.Under a warming climate from 2020 to 2050,VPD will decrease due to the increased RH.Based on their pollen viability and silk emergence ratios,the 20 genotypes fell into four different groups.The group with high pollen viability and a high silk emergence ratio performed better under heat stress,and their performance can be further improved by combining the improved flowering pattern traits.
基金Funded by the National Natural Science Foundation of China(No.51678254)。
文摘Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based composites were compared with adding different silica gel particle size and proportion.The morphological characteristics,the isothermal equilibrium moisture content curve,moisture absorption and desorption rate,moisture absorption and desorption stability,and humidity-conditioning performance were tested and analyzed.The experimental results show that,compared with pure-gypsum,the surface structure of the gypsum-based composites is relatively loose,the quantity,density and aperture of the pores in the structure increase.The absorption and desorption capacity increase along with the increase of silica gel particle size and silica gel proportion.When 3 mm silica gel particle size is added with a mass ratio of 40%,the maximum equilibrium moisture content of humidity-controlling composites is 0.161 g/g at 98% relative humidity(RH),3.22 times that of pure-gypsum.The moisture absorption and desorption rates are increased,the equilibrium moisture absorption and desorption rates are 2.68 times and 1.61 times that of pure-gypsum at 58.5% RH,respectively.The gypsum-based composites have a good stability,which has better timely response to dynamic humidity changes and can effectively regulate indoor humidity under natural conditions.
基金supported by National Natural Science Foundation of China(No.12272184).
文摘The production and utilization of high-energetic explosives often pose a range of safety hazards,with sensitivity being a key factor in evaluating these risks.To investigate how temperature,particle size,and air humidity affect the responsiveness of commonly used high-energetic explosives,a series of BAM(Bundesanstalt für Materialforschung und-prüfung)impact and friction sensitivity tests were carried out to determine the critical impact energy and critical load pressure of four representative high-energetic explosives(RDX,HMX,PETN and CL-20)under different temperatures,particle sizes,and air humidity conditions.The experimental findings facilitated an examination of temperature and particle size affecting the sensitivity of high-energetic explosives,along with an assessment of the influence of air humidity on sensitivity testing.The results clearly indicate that high-energetic explosives display a substantial decline in critical reaction energy when subjected to micrometre-sized particles and an air humidity level of 45%at a temperature of 90℃.Furthermore,it was noted that the critical reaction energy of high-energetic explosives diminishes with an increase in temperature within 25℃−90℃.In the same vein,as the particle sizes of high-energetic explosives increase,so does the critical reaction energy for micrometre-sized particles.High air humidity significantly affects the sensitivity testing of high-energetic explosives,emphasizing the importance of refraining from conducting sensitivity tests in such conditions.
基金Funded by the Young and Middle-aged Academic and Technical Leaders Reserve Talent Project of Yunnan Province(No.202105AC160054)。
文摘In the preparation of a series of Ce_(0.8)Zr_(0.2)O_(y)catalysts catalyzing the removal of formaldehyde,BET,H2-TPR,IR,SEM,XPS,and XRD were used to characterize the catalyst,and the influence of humidity on the catalyst activity was studied by adjusting the humidity during the process.The experimental results showed that the formaldehyde removal rate increased with the increase of humidity.When the humidity was higher than 50%,the formaldehyde removal rate decreased by 3%over that when the humidity was 50%.The characterization results showed that humidity facilitated the activation of oxygen and the formation of hydroxyl groups,which both promoted the formation and oxidative decomposition of intermediates and prevented the deposition of intermediates that clogged the pores,allowing more formaldehyde to be adsorbed and oxidized,which increased the activity of the catalyst.This provides new mechanistic evidence for the oxidation of formaldehyde and helps in the development of relatively low-cost materials for formaldehyde purification.
文摘This study aims to quantify the susceptibility of granular materials used in pavements to changes in moisture content and propose a correlation model to incorporate this susceptibility into seasonal analyses.The fines content and the percentage of fractured coarse aggregates were identified as direct indicators of the resilient modulus susceptibility to changes in water content.The results showed that the percentage of fractured coarse aggregates particles(FR)has a more significant impact on the resilient modulus(Er)of crushed granular materials used in pavement construction than the combined indicator of the fines content and sample volumetrics(nf).Crushed granular materials with a higher percentage of fractured coarse aggregates are relatively insensitive to changes in the degree of saturation,but become more sensitive as the fine fraction porosity decreases.An adjusted model was proposed based on the existing formulation,but considers a complex parameter to describe and adjust the sensitivity of base granular materials to variations in moisture content with respect to fabrication charac-teristics,fines content and volumetric properties.The model shows that the variation of Er values is below10%for fully crushed granular materials.However,it reaches approximately±12%for materials with 75%of crushed coarse aggregates andþ40%and-25%for materials with FR=50%.This model could help select good ag-gregates characteristics and adjust grain-size distribution for environments where significant moisture content variations can occur in the pavement system,such as in the Province of Quebec(Canada).As it is based on pa-rameters that can be easily determined or estimated,it also represents a valuable tool for detailed design and analysis that can consider material characteristics.
文摘Many attempts have been made to estimate calorific value of bagasse using mathematical equations, which were created based on data from proximate, ultimate, physical and chemical analysis. Questions have been raised on the applicability of these equations in different parts of the globe. This study was initiated to tackle these problems and also check the most suited mathematical models for the Law Heating Value of Cameroonian bagasse. Data and bagasse samples were collected at the Cameroonian sugarcane factory. The effects of cane variety, age of harvesting, source, moisture content, and sucrose on the LHV of Cameroon bagasse have been tested. It was shown that humidity does not change within a variety, but changes from the dry season to the rainy season;the sugar in the rainy season is significantly different from that collected in the dry season. Samples of the same variety have identical LHV. LHV in the dry season is significantly different from LHV in the rainy season. According to the fact that this study was done for cane with different ages of harvesting, the maturity of Cameroonian sugarcane does not affect LHV of bagasse. Tree selected models are much superior tool for the prediction of the LHV for bagasse in Cameroon compared to others. The standard deviation of these validated models is around 200 kJ/kg compared to the experimental. Thus, the models determined in foreign countries, are not necessarily applicable in predicting the LHV of bagasse in other countries with the same accuracy as that in their native country. There was linear relationship between humidity, ash and sugar content in the bagasse. It is possible to build models based on data from physical composition of bagasse using regression analysis.
基金This study was supported by the National Natural Science Foundation of China (52105593 and 62271439)STI 2030 —Major Projects(2022ZD0208601)the “Pioneer” and “Leading Goose” R&D Program of Zhejiang (2023C01051)。
文摘Flexible and wearable humidity sensors play a vital role in daily point-of-care diagnosis and noncontact human-machine interactions.However,achieving a facile and high-speed fabrication approach to realizing flexible humidity sensors remains a challenge.In this work,a wearable capacitive-type Ga_(2)O_(3)/liquid metal-based humidity sensor is demonstrated by a one-step laser direct writing technique.Owing to the photothermal effect of laser,the Ga_(2)O_(3)-wrapped liquid metal particles can be selectively sintered and converted from insulative to conductive traces with a resistivity of 0.19Ω·cm,while the untreated regions serve as active sensing layers in response to moisture changes.Under 95%relative humidity,the humidity sensor displays a highly stable performance along with rapid response and recover time.Utilizing these superior properties,the Ga_(2)O_(3)/liquid metal-based humidity sensor is able to monitor human respiration rate,as well as skin moisture of the palm under different physiological states for healthcare monitoring.
基金supported by the National Key Research and Development Program of China(2022YFB3205500,and 2022YFC3104700)the National Natural Science Foundation of China(62101329 and 61971284)+4 种基金the Shanghai Sailing Program(21YF1421400)the Natural Science Foundation of Shanghai(23ZR1430100)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(SL2020ZD203,SL2021MS006 and SL2020MS031)Scientific Research Fund of Second Institute of Oceanography,Ministry of Natural Resources of P.R.China(SL2003)Startup Fund for Youngman Research at Shanghai Jiao Tong University.
文摘Human metabolite moisture detection is important in health monitoring and non-invasive diagnosis.However,ultra-sensitive quantitative extraction of respiration information in real-time remains a great challenge.Herein,chemiresistors based on imine-linked covalent organic framework(COF)films with dual-active sites are fabricated to address this issue,which demonstrates an amplified humidity-sensing signal performance.By regulation of monomers and functional groups,these COF films can be pre-engineered to achieve high response,wide detection range,fast response,and recovery time.Under the condition of relative humidity ranging from 13 to 98%,the COFTAPB-DHTA film-based humidity sensor exhibits outstanding humidity sensing perfor-mance with an expanded response value of 390 times.Furthermore,the response values of the COF film-based sensor are highly linear to the relative humidity in the range below 60%,reflecting a quantitative sensing mechanism at the molecular level.Based on the dual-site adsorption of the(-C=N-)and(C-N)stretching vibrations,the revers-ible tautomerism induced by hydrogen bonding with water molecules is demonstrated to be the main intrinsic mechanism for this effective humidity detection.In addition,the synthesized COF films can be further exploited to effectively detect human nasal and oral breathing as well as fabric permeability,which will inspire novel designs for effective humidity-detection devices.
基金Jin Wu acknowledges financial support from the National Natural Science Foundation of China(No.61801525)the Guangdong Basic and Applied Basic Research Foundation(No.2020A1515010693)+1 种基金the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(No.22lgqb17)the Independent Fund of the State Key Laboratory of Optoelectronic Materials and Technologies(Sun Yat-sen University)under grant No.OEMT-2022-ZRC-05.
文摘Breathing is an inherent human activity;however,the composition of the air we inhale and gas exhale remains unknown to us.To address this,wearable vapor sensors can help people monitor air composition in real time to avoid underlying risks,and for the early detection and treatment of diseases for home healthcare.Hydrogels with three-dimensional polymer networks and large amounts of water molecules are naturally flexible and stretchable.Functionalized hydrogels are intrinsically conductive,self-healing,self-adhesive,biocompatible,and room-temperature sensitive.Compared with traditional rigid vapor sensors,hydrogel-based gas and humidity sensors can directly fit human skin or clothing,and are more suitable for real-time monitoring of personal health and safety.In this review,current studies on hydrogel-based vapor sensors are investigated.The required properties and optimization methods of wearable hydrogel-based sensors are introduced.Subsequently,existing reports on the response mechanisms of hydrogel-based gas and humidity sensors are summarized.Related works on hydrogel-based vapor sensors for their application in personal health and safety monitoring are presented.Moreover,the potential of hydrogels in the field of vapor sensing is elucidated.Finally,the current research status,challenges,and future trends of hydrogel gas/humidity sensing are discussed.
基金the National Key Research and Development Program of China[grant number 2022YFF0801303]the National Natural Science Foundation of China[grant numbers 41991284 and 42075021].
基金supported by the National Key Research and Development Program of China(No.2019YFD1002004).
文摘The environment significantly impacts the interaction between plants and pathogens,thus remarkably affecting crop disease occurrence.However,the detailed combined mechanisms of temperature and humidity influencing this interaction remain unclear.In this study,the interaction between tomato and Botrytis cinerea in various temperature and humidity conditions was analyzed by histological observation and a dual RNA-seq approach.Results showed that low humidity was not favorable for mycelial growth,resulting in infection failure.Both high and low temperatures at high humidity successfully inhibited pathogenic infection and disease incidence in the tomato plants,thus enhancing their resistance to B.cinerea.The high temperature and high humidity(HH)treatment induced the upregulation of light reaction genes,increased the net photosynthetic rate,and expanded the chloroplast morphology of infected tomatoes.The HH treatment also inhibited the expression of cell cycle-related genes of B.cinerea,interfered with conidial germination andmycelial growth,and damagedmycelial cell structure.Lowtemperature and high humidity(LH)treatment induced the expression of cell wall modification genes and remodeled the cell wall morphology of tomatoes in response to B.cinerea.In addition,the downregulated fungal catabolic genes and the abnormal increase in electron density ofmycelial cells under LH treatment subsequently reduced the infection ability of B.cinerea.These results further explain the coupled effects of temperature and humidity on plant defenses and pathogen virulence,and provide a potential means to control gray mold.
基金supported by the National Key Research and Development Program of China (2018YFB1502502)the National Natural Science Foundation of China (22179127)。
文摘Humidity can affect the attenuation of MEA(membrane electrode assembly), however, the relationship between humidity and MEA decays is complex and ambiguous in realistic application. Herein, we design a simulating automotive protocol, performed on five single fuel cells under RH(relative humidity) 100%,RH 80%, RH 64%, and RH 40%, RH 10%, respectively, to study the relationship of MEA decays and humidity and suggest optimized humidity range to extend the durability. With the electrochemical impedance spectroscopy, cyclic voltammetry, X-ray fluorescence, X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, the four degradation mechanisms about catalyst layer, including Pt dissolution, Pt coarsening, carbon corrosion and ionomer degradation, are observed. Pt coarsening and carbon corrosion are accelerated by higher water content at high humidity. Ionomer degradation and Pt dissolution are enhanced in low humidity. With the linear sweep voltammetry, ion chromatography,nuclear magnetic resonance, tensile test and scan electron microscope, chemical and mechanical degradation in proton exchange membrane are all observed in these five fuels. Chemical degradation, characterized by membrane thinning and more fluoride loss, occurred markedly in RH 10%. Mechanical degradation, characterized by the non-uniformity thickness and bad mechanical properties, is more pronounced in RH 100%, RH 80%, RH 64%. These two degradations are in a moderate level in RH 40%. The research suggests that the RH range from 64% to 40% is conductive to mitigate the degradation of MEAs operated in automotive applications.
文摘The development of microbial-based products requires certain criteria for them to be successfully commercialized. The product must meet the following desirable criteria: effectiveness, contamination free, stability, cost-effectiveness, and a prolonged shelf life. Controlling the drying process is crucial for ensuring the stability and durability of the product. The traditional approach, which involved mechanical and natural drying, led to decreased productivity and quality. The objective of this research endeavour was to achieve a dry process enhancement while preserving the microbial quality of Trichoderma asperellum (M103). The temperature and relative humidity during the drying period were monitored under two conditions: with and without a dehumidifier. The results demonstrate that the dehumidifier increases drying period efficiency by up to 63%.
文摘Background: Although a number of studies have reported that the hot and humid compress from traditional Chinese medicine (TCM) is effective in treating lumbar disc herniation (LDH) with qi stagnation and blood stasis, clinical evidence is limited. Objective: The purpose of this study is to provide high-quality evidence to support the effectiveness of the traditional Chinese hot and humid compress in the treatment of LDH with qi stagnation and blood stasis. Methods: From October 2021 to November 2023, 86 patients with LDH of qi stagnation and blood stasis type were recruited in our hospital and divided into a control (n = 43) and an observation group (n = 43) according to the random number table method. The control group was given routine clinical treatment, and the observation group was treated with the hot and humid compress therapy for two weeks. The visual analogue scale (VAS) score, Japanese Orthopaedic Association (JOA) score, TCM syndrome score, serum interleukin-6 (IL-6), serum interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) were observed and compared between the two groups before and after treatment, and the clinical efficacy of the two groups was evaluated. Results: After treatment, the VAS score, TCM symptom score, and serum IL-6, IL-1β, and TNF-α levels decreased in both groups (P P P P P Conclusions: The hot and humid compress of traditional Chinese medicine can effectively relieve pain, restore lumbar function, improve TCM syndromes, reduce the level of inflammatory factors, and have a curative effect in treating LDH.
基金Supported by Forestry Science and Technology Program of Hunan Province(XLK201406)~~
文摘Under the condition of high temperature, the effects of five cover patterns (clean tillage, film mulching, weed covering, branches and leaves covering and growing grass covering) on soil properties in young Phoebe boumei forest were in- vestigated. The results showed that the five cover patterns all showed significant ef- fects on soil properties in young Phoebe bournei forest under the condition of high temperature. Land cover increased land temperature in Phoebe boumei forest. Un- der the film mulching, the land temperature was increased most rapidly with the largest increment. However, weed covering, branches and leaves covering and growing grass covering decreased land temperature. Among them, growing grass covering showed the best cooling effect. The film mulching, weed covering, branch- es and leaves covering and growing grass covering all increased land humidity. The film mulching showed the best moisture-preserving effect in the early period, but in the late period, the humidity in the film mulching treatment group was lower than that in the clean tillage treatment group. Among the five mulching patterns, moisture loss in the film mulching treatment group was slowest and least, followed by those in the weed covering and branches and leaves covering treatment groups, and moisture loss in the growing grass covering treatment group was fastest and most.
文摘By using the daily average relative humidity data in Urumqi during 1961-2000,the basic climate characteristics and the variation trend of relative humidity in Urumqi in recent 40 years were analyzed.The results showed that the yearly average relative humidity in Urumqi was 57.5%.The relative humidity in winter was 77.5% which was the biggest all the year round,and the relative humidity in summer was 41.2% which was the smallest.The relative humidity in spring,summer,autumn,winter and the yearly relative humidity all displayed the increase trend.The yearly mean relative humidity had the periods of mainly 2,3-4 and quasi-7 years.The periodic oscillation of quasi-7 years was the strongest.
基金Supported by Jiangsu Agricultural Science and Technology Innovation Fund[CX(14)2112]~~
文摘In order to analyze the ventilation and cooling performance of single-tunnel plastic greenhouse in Yangtze-Huai region, the effects of two different ventilation modes (side window, side window+roof window) on the temperature and humidity of plastic greenhouse were studied. The results showed that the ventilation mode of opening side window and roof window could effectively reduce the temperature and humidity at the plant canopy height, which was conducive to the growth of plant in greenhouse.
文摘Effects of pressure and temperature in the chamber during vacuum drying on the relative humidity and evaporation of wood surface were investigated by using the vacuum chamber. The setting temperature during vacuum drying included dry-bulb temperature ta, the wet-bulb temperature tw and the temperature difference between the air in the vacuum chamber and the cooling water in the condenser. Results indicated that relative humidity during vacuum drying was affected by the dry-bulb temperature td, the wet-bulb temperature tw and the temperature difference between the air in the vacuum chamber and the water in the condenser. Relative humidity of wood decreased with the increase in temperature at the given temperature of the water in the condenser. The relative humidity was affected slightly by pressure in the vacuum chamber pA, and it decreased from 70% to 65% with pA increased from 50 kPa to 101 kPa. Moreover, there was nearly no evaporation under the vacuum without external heating.
文摘Children's English learning in China attracts more and more people's attention and is on the tendency of starting at an early age. Under the trend of "learning English from childhood", the author has explored the Critical Period Hypothesis and discussed the younger learners' disadvantages and older learners' advantages when learning English. and concludes that early-age English learning is not feasible.