The aerodynamic design of a strategic weapon is of interest, especially when the radar signatures are included in the conceptual design phase. The basics of stealth configurations and stealth mechanisms for missiles a...The aerodynamic design of a strategic weapon is of interest, especially when the radar signatures are included in the conceptual design phase. The basics of stealth configurations and stealth mechanisms for missiles are reviewed. The Radar Cross Sections (RCS) of some generic missiles are predicted and compared to analyze the trade-offs involved between low RCS and aerodynamic performance. The consideration of RCS prediction in the conceptual design phase gives a quick insight into the stealth performance prior to detailed design.展开更多
Multiple-input multiple-output (MIMO) radar is a new concept with some new characteristics, such as multiple orthogonal waveforms and omnidirectional coverage. Based on Stein's lemma, we use relative entropy as a p...Multiple-input multiple-output (MIMO) radar is a new concept with some new characteristics, such as multiple orthogonal waveforms and omnidirectional coverage. Based on Stein's lemma, we use relative entropy as a precise and general measure of error exponent to study detection performance for both MIMO radar and phased array radar. And based on derived analytical results, we further study the system configuration problem of Bistatic MIMO radar systems, where transmitters and receivers are located in different positions. Some interesting results are presented. For phased array radar, when the total numbers of transmitters and receivers are fixed, we should always make the number of transmitters equal to the number of receivers. For MIMO radar, we should use a small number of transmitters in low signal noise ratio (SNR) region, and make the number of transmitters equal to the number of receivers in high SNR region. These results are instructive for deployment of bistatic MIMO radar systems in the future.展开更多
文摘The aerodynamic design of a strategic weapon is of interest, especially when the radar signatures are included in the conceptual design phase. The basics of stealth configurations and stealth mechanisms for missiles are reviewed. The Radar Cross Sections (RCS) of some generic missiles are predicted and compared to analyze the trade-offs involved between low RCS and aerodynamic performance. The consideration of RCS prediction in the conceptual design phase gives a quick insight into the stealth performance prior to detailed design.
基金Supported in part by the National Natural Science Foundation of China (Grant No. 60602048)aviation science funds of China(Grant No. 20060112118)the National Ministry Foundation of China (Grant No. 20094010040)
文摘Multiple-input multiple-output (MIMO) radar is a new concept with some new characteristics, such as multiple orthogonal waveforms and omnidirectional coverage. Based on Stein's lemma, we use relative entropy as a precise and general measure of error exponent to study detection performance for both MIMO radar and phased array radar. And based on derived analytical results, we further study the system configuration problem of Bistatic MIMO radar systems, where transmitters and receivers are located in different positions. Some interesting results are presented. For phased array radar, when the total numbers of transmitters and receivers are fixed, we should always make the number of transmitters equal to the number of receivers. For MIMO radar, we should use a small number of transmitters in low signal noise ratio (SNR) region, and make the number of transmitters equal to the number of receivers in high SNR region. These results are instructive for deployment of bistatic MIMO radar systems in the future.