In this study,the behavior of Gavoshan dam was evaluated during construction and the first impounding.A two-dimensional(2D) numerical analysis was conducted based on a finite difference method on the largest cross-s...In this study,the behavior of Gavoshan dam was evaluated during construction and the first impounding.A two-dimensional(2D) numerical analysis was conducted based on a finite difference method on the largest cross-section of the dam using the results of instrument measurements and back analysis.These evaluations will be completed in the case that back analysis is carried out in order to control the degree of the accuracy and the level of confidence of the measured behavior since each of the measurements could be controlled by comparing it to the result obtained from the numerical model.Following that,by comparing the results of the numerical analysis with the measured values,it is indicated that there is a proper consistency between these two values.Moreover,it was observed that the dam performance was suitable regarding the induced pore water pressure,the pore water pressure ratio r;,settlement,induced stresses,arching degree,and hydraulic fracturing probability during the construction and initial impounding periods.The results demonstrated that the maximum settlement of the core was 238 cm at the end of construction.In the following 6 years after construction(initial impounding and exploitation period),the accumulative settlement of the dam was 270 cm.It is clear that 88% of the total settlement of the dam took place during dam construction.The reason is that the clay core was smashed in the wet side,i.e.the optimum moisture content.Whereas the average curving ratio was 0.64 during dam construction; at the end of the initial impounding,the maximum amount of curving ratio in the upstream was 0.81,and the minimum(critical) amount in the downstream was 0.52.It was also concluded that this dam is safe in comparison with the behaviors of other similar dams in the world.展开更多
The use of clay-gravel mixtures(i.e.,adding excavated or natural gravel particles into clay soil matrix)as the main filling materials is increasing in the anti-seepage system of high Earth Core Rockfill Dams(ECRDs).Wi...The use of clay-gravel mixtures(i.e.,adding excavated or natural gravel particles into clay soil matrix)as the main filling materials is increasing in the anti-seepage system of high Earth Core Rockfill Dams(ECRDs).With the continuous construction of high ECRDs in the Chinese plateaus and cold regions,it is of great urgency and importance to understand the physical and mechanical characteristics of compacted clay-gravel mixtures under freeze-thaw action.To this end,laboratory freezing-thawing tests,computed tomography(CT),and triaxial compression tests were conducted to evaluate the effects of freezethaw cycles on moisture loss,pore structure characteristics,stress-strain behavior,failure strength,elastic modulus,cohesion,and internal friction angle of compacted clay-gravel mixtures.The results demonstrate that,1)the freeze-thaw cycle significantly changed the mechanical characteristics of the clay-gravel mixture samples,but the shape of the stress-strain curve is less sensitive to it.2)The failure strength of samples exhibits a significant decrease after the first freeze-thaw cycle,but shows a certain increase as the number of freeze-thaw cycles increases from 1 to 2.3)The elastic modulus of samples first decreases and then increases with increasing freeze-thaw cycle,and the most severe deterioration was observed after the first freeze-thaw cycle.4)Regardless of the number of freeze-thaw cycles,there is a linear relationship between failure strength and elastic modulus for a sample that has suffered freeze-thaw weathering.5)The cohesion of samples decreases firstly and then slightly increases with increasing freeze-thaw cycles,while the internal friction angle is hardly affected.展开更多
The joint of clay core-wall and concrete cut-off wall is one of the weakest parts in high earth and rockftll dams.A kind of highly plastic clay is always fixed on the joint to fit the large shear deformation between c...The joint of clay core-wall and concrete cut-off wall is one of the weakest parts in high earth and rockftll dams.A kind of highly plastic clay is always fixed on the joint to fit the large shear deformation between clay core-wall and concrete cut-offwall,so the hydro-mechanical coupling mechanisms on the joint under high stress,high hydraulic gradient,and large shear deformation are of great importance for the evaluation of dam safety.The hydro-mechanical coupling characteristics of the joint of the highly plastic clay and the concrete cut-off wall in a high earth and rockfill dam in China were studied by using a newly designed soil-structure contact erosion apparatus.The experimental results indicate that:1) Shear failure on the joint is due to the hydro-mechanical coupling effect of stress and seepage failure.The seepage failure will induce the final shear failure when the ratio of deviatoric stress to confining pressure is within 1.0-1.2; 2) A negative exponential permeability empirical model for the joint denoted by a newly defined principal stress function,which considers the coupling effect of confining pressure and axial pressure on the permeability,is established based on hydro-mechanical coupling experiments.3) The variation of the settlement before and after seepage failure is very different.The settlement before seepage failure changes very slowly,while it increases significantly after the seepage failure.4) The stress-strain relationship is of a strain softening type.5) Flow along the joint still follows Darcian flow rule.The results will provide an important theoretical basis for the further evaluation on the safety of the high earth and rockfill dam.展开更多
文摘In this study,the behavior of Gavoshan dam was evaluated during construction and the first impounding.A two-dimensional(2D) numerical analysis was conducted based on a finite difference method on the largest cross-section of the dam using the results of instrument measurements and back analysis.These evaluations will be completed in the case that back analysis is carried out in order to control the degree of the accuracy and the level of confidence of the measured behavior since each of the measurements could be controlled by comparing it to the result obtained from the numerical model.Following that,by comparing the results of the numerical analysis with the measured values,it is indicated that there is a proper consistency between these two values.Moreover,it was observed that the dam performance was suitable regarding the induced pore water pressure,the pore water pressure ratio r;,settlement,induced stresses,arching degree,and hydraulic fracturing probability during the construction and initial impounding periods.The results demonstrated that the maximum settlement of the core was 238 cm at the end of construction.In the following 6 years after construction(initial impounding and exploitation period),the accumulative settlement of the dam was 270 cm.It is clear that 88% of the total settlement of the dam took place during dam construction.The reason is that the clay core was smashed in the wet side,i.e.the optimum moisture content.Whereas the average curving ratio was 0.64 during dam construction; at the end of the initial impounding,the maximum amount of curving ratio in the upstream was 0.81,and the minimum(critical) amount in the downstream was 0.52.It was also concluded that this dam is safe in comparison with the behaviors of other similar dams in the world.
基金funded by the Fundamental Research Funds for the Central Universities(B220203029)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX21_0511)+1 种基金the Open Research Fund of Key Laboratory of Construction and Safety of Water Engineering of the Ministry of Water Resources,China Institute of Water Resources and Hydropower Research(IWHR-ENGI-202006)partly supported by the National Natural Science Foundation of China(52109123,51979091)。
文摘The use of clay-gravel mixtures(i.e.,adding excavated or natural gravel particles into clay soil matrix)as the main filling materials is increasing in the anti-seepage system of high Earth Core Rockfill Dams(ECRDs).With the continuous construction of high ECRDs in the Chinese plateaus and cold regions,it is of great urgency and importance to understand the physical and mechanical characteristics of compacted clay-gravel mixtures under freeze-thaw action.To this end,laboratory freezing-thawing tests,computed tomography(CT),and triaxial compression tests were conducted to evaluate the effects of freezethaw cycles on moisture loss,pore structure characteristics,stress-strain behavior,failure strength,elastic modulus,cohesion,and internal friction angle of compacted clay-gravel mixtures.The results demonstrate that,1)the freeze-thaw cycle significantly changed the mechanical characteristics of the clay-gravel mixture samples,but the shape of the stress-strain curve is less sensitive to it.2)The failure strength of samples exhibits a significant decrease after the first freeze-thaw cycle,but shows a certain increase as the number of freeze-thaw cycles increases from 1 to 2.3)The elastic modulus of samples first decreases and then increases with increasing freeze-thaw cycle,and the most severe deterioration was observed after the first freeze-thaw cycle.4)Regardless of the number of freeze-thaw cycles,there is a linear relationship between failure strength and elastic modulus for a sample that has suffered freeze-thaw weathering.5)The cohesion of samples decreases firstly and then slightly increases with increasing freeze-thaw cycles,while the internal friction angle is hardly affected.
基金Projects(51009053,51079039)supported by the National Natural Science Foundation of ChinaProject(20100094120004)supported by the Doctoral Program of Higher Education of China
文摘The joint of clay core-wall and concrete cut-off wall is one of the weakest parts in high earth and rockftll dams.A kind of highly plastic clay is always fixed on the joint to fit the large shear deformation between clay core-wall and concrete cut-offwall,so the hydro-mechanical coupling mechanisms on the joint under high stress,high hydraulic gradient,and large shear deformation are of great importance for the evaluation of dam safety.The hydro-mechanical coupling characteristics of the joint of the highly plastic clay and the concrete cut-off wall in a high earth and rockfill dam in China were studied by using a newly designed soil-structure contact erosion apparatus.The experimental results indicate that:1) Shear failure on the joint is due to the hydro-mechanical coupling effect of stress and seepage failure.The seepage failure will induce the final shear failure when the ratio of deviatoric stress to confining pressure is within 1.0-1.2; 2) A negative exponential permeability empirical model for the joint denoted by a newly defined principal stress function,which considers the coupling effect of confining pressure and axial pressure on the permeability,is established based on hydro-mechanical coupling experiments.3) The variation of the settlement before and after seepage failure is very different.The settlement before seepage failure changes very slowly,while it increases significantly after the seepage failure.4) The stress-strain relationship is of a strain softening type.5) Flow along the joint still follows Darcian flow rule.The results will provide an important theoretical basis for the further evaluation on the safety of the high earth and rockfill dam.