In the process of ion-adsorption rare earth ore leaching,the migration characteristics of the wetting front in multi-hole injection holes and the influence of wetting front intersection effect on the migration distanc...In the process of ion-adsorption rare earth ore leaching,the migration characteristics of the wetting front in multi-hole injection holes and the influence of wetting front intersection effect on the migration distance of wetting fronts are still unclear.Besides,wetting front migration distance and leaching time are usually required to optimize the leaching process.In this study,wetting front migration tests of ionadsorption rare earth ores during the multi-hole fluid injection(the spacing between injection holes was 10 cm,12 cm and 14 cm)and single-hole fluid injection were completed under the constant water head height.At the pre-intersection stage,the wetting front migration laws of ion-adsorption rare earth ores during the multi-hole fluid injection and single-hole fluid injection were identical.At the postintersection stage,the intersection accelerated the wetting front migration.By using the Darcy’s law,the intersection effect of wetting fronts during the multi-hole liquid injection was transformed into the water head height directly above the intersection.Finally,based on the Green-Ampt model,a wetting front migration model of ion-adsorption rare earth ores during the multi-hole unsaturated liquid injection was established.Error analysis results showed that the proposed model can accurately simulate the infiltration process under experimental conditions.The research results enrich the infiltration law and theory of ion-adsorption rare earth ores during the multi-hole liquid injection,and this study provides a scientific basis for optimizing the liquid injection well pattern parameters of ion-adsorption rare earth in situ leaching in the future.展开更多
The aim of this study is to characterize soil/reinforcement interaction in reinforced earth structures. The study showed that the internal behavior of this type of structure depends on a number of factors, including t...The aim of this study is to characterize soil/reinforcement interaction in reinforced earth structures. The study showed that the internal behavior of this type of structure depends on a number of factors, including the engineering backfill, the reinforcement and the soil/reinforcement interaction. The study also showed that the soil-reinforcement interaction phenomenon is a fairly complex mechanism that depends on the applied load, the geometry of the structure, the characteristics of the soil and a set of parameters characterizing the nailing: density, number and length of reinforcements, inclination of the reinforcements in relation to the sliding surface, mechanical characteristics of the reinforcements and, in particular, the relative stiffness of the reinforcements and the soil. The results showed that the tensile forces developed in the reinforcement are not entirely reversible, and that the soil at the interface undergoes permanent deformation, leading to the appearance of irreversible tensile forces in the reinforcement.展开更多
The soil freezing and thawing process affects soil physical properties,such as heat conductivity,heat capacity,and hydraulic conductivity in frozen ground regions,and further affects the processes of soil energy,hydro...The soil freezing and thawing process affects soil physical properties,such as heat conductivity,heat capacity,and hydraulic conductivity in frozen ground regions,and further affects the processes of soil energy,hydrology,and carbon and nitrogen cycles.In this study,the calculation of freezing and thawing front parameterization was implemented into the earth system model of the Chinese Academy of Sciences(CAS-ESM)and its land component,the Common Land Model(CoLM),to investigate the dynamic change of freezing and thawing fronts and their effects.Our results showed that the developed models could reproduce the soil freezing and thawing process and the dynamic change of freezing and thawing fronts.The regionally averaged value of active layer thickness in the permafrost regions was 1.92 m,and the regionally averaged trend value was 0.35 cm yr–1.The regionally averaged value of maximum freezing depth in the seasonally frozen ground regions was 2.15 m,and the regionally averaged trend value was–0.48 cm yr–1.The active layer thickness increased while the maximum freezing depth decreased year by year.These results contribute to a better understanding of the freezing and thawing cycle process.展开更多
Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl...Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.展开更多
Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,t...Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,the failure mode and the earth pressure acting on the rigid retaining wall with EPS geofoam inclusions and granular backfills(henceforth referred to as EPS-wall),under limited surcharge loading are investigated through two-and three-dimensional model tests.The testing results show that different from the sliding of almost all the backfill in the EPS-wall under semi-infinite surcharge loading,only an approximately triangular backfill slides in the wall under limited surcharge loading.The distribution of the lateral earth pressure on the EPS-wall under limited surcharge loading is non-linear,and the distribution changes from the increase of the wall depth to the decrease with the increase of the limited surcharge loading.An approach based on the force equilibrium of a differential element is developed to predict the lateral earth pressure behind the EPS-wall subjected to limited surcharge loading,and its performance was fully validated by the three-dimensional model tests.展开更多
This paper provides a systematic evaluation of the ability of 12 Earth System Models(ESMs)participating in the Coupled Model Intercomparison Project Phase 6(CMIP6)to simulate the spatial inhomogeneity of the atmospher...This paper provides a systematic evaluation of the ability of 12 Earth System Models(ESMs)participating in the Coupled Model Intercomparison Project Phase 6(CMIP6)to simulate the spatial inhomogeneity of the atmospheric carbon dioxide(CO_(2))concentration.The multi-model ensemble mean(MME)can reasonably simulate the increasing trend of CO_(2) concentration from 1850 to 2014,compared with the observation data from the Scripps CO_(2) Program and CMIP6 prescribed data,and improves upon the CMIP5 MME CO_(2) concentration(which is overestimated after 1950).The growth rate of CO_(2) concentration in the northern hemisphere(NH)is higher than that in the southern hemisphere(SH),with the highest growth rate in the mid-latitudes of the NH.The MME can also reasonably simulate the seasonal amplitude of CO_(2) concentration,which is larger in the NH than in the SH and grows in amplitude after the 1950s(especially in the NH).Although the results of the MME are reasonable,there is a large spread among ESMs,and the difference between the ESMs increases with time.The MME results show that regions with relatively large CO_(2) concentrations(such as northern Russia,eastern China,Southeast Asia,the eastern United States,northern South America,and southern Africa)have greater seasonal variability and also exhibit a larger inter-model spread.Compared with CMIP5,the CMIP6 MME simulates an average spatial distribution of CO_(2) concentration that is much closer to the site observations,but the CMIP6-inter-model spread is larger.The inter-model differences of the annual means and seasonal cycles of atmospheric CO_(2) concentration are both attributed to the differences in natural sources and sinks of CO_(2) between the simulations.展开更多
Since the launch of the Google Earth Engine(GEE)cloud platform in 2010,it has been widely used,leading to a wealth of valuable information.However,the potential of GEE for forest resource management has not been fully...Since the launch of the Google Earth Engine(GEE)cloud platform in 2010,it has been widely used,leading to a wealth of valuable information.However,the potential of GEE for forest resource management has not been fully exploited.To extract dominant woody plant species,GEE combined Sen-tinel-1(S1)and Sentinel-2(S2)data with the addition of the National Forest Resources Inventory(NFRI)and topographic data,resulting in a 10 m resolution multimodal geospatial dataset for subtropical forests in southeast China.Spectral and texture features,red-edge bands,and vegetation indices of S1 and S2 data were computed.A hierarchical model obtained information on forest distribution and area and the dominant woody plant species.The results suggest that combining data sources from the S1 winter and S2 yearly ranges enhances accuracy in forest distribution and area extraction compared to using either data source independently.Similarly,for dominant woody species recognition,using S1 winter and S2 data across all four seasons was accurate.Including terrain factors and removing spatial correlation from NFRI sample points further improved the recognition accuracy.The optimal forest extraction achieved an overall accuracy(OA)of 97.4%and a maplevel image classification efficacy(MICE)of 96.7%.OA and MICE were 83.6%and 80.7%for dominant species extraction,respectively.The high accuracy and efficacy values indicate that the hierarchical recognition model based on multimodal remote sensing data performed extremely well for extracting information about dominant woody plant species.Visualizing the results using the GEE application allows for an intuitive display of forest and species distribution,offering significant convenience for forest resource monitoring.展开更多
Compressed earth blocks (CEB) are an alternative to cement blocks in the construction of wall masonry. However, the optimal architectural construction methods for adequate thermal comfort for occupants in hot and arid...Compressed earth blocks (CEB) are an alternative to cement blocks in the construction of wall masonry. However, the optimal architectural construction methods for adequate thermal comfort for occupants in hot and arid environments are not mastered. This article evaluates the influence of architectural and constructive modes of buildings made of CEB walls and concrete block walls, to optimize and compare their thermal comfort in the hot and dry tropical climate of Ouagadougou, Burkina Faso. Two identical pilot buildings whose envelopes are made of CEB and concrete blocks were monitored for this study. The thermal models of the pilot buildings were implemented in the SketchUp software using an extension of EnergyPlus. The models were empirically validated after calibration against measured thermal data from the buildings. The models were used to do a parametric analysis for optimization of the thermal performances by simulating plaster coatings on the exterior of walls, airtight openings and natural ventilation depending on external weather conditions. The results show that the CEB building displays 7016 hours of discomfort, equivalent to 80.1% of the time, and the concrete building displays 6948 hours of discomfort, equivalent to 79.3% of the time. The optimization by modifications reduced the discomfort to 2918 and 3125 hours respectively;i.e. equivalent to only 33.3% for the CEB building and 35.7% for the concrete building. More study should evaluate thermal optimizations in buildings in real time of usage such as residential buildings commonly used by the local middle class. The use of CEB as a construction material and passive means of improving thermal comfort is a suitable ecological and economical option to replace cementitious material.展开更多
Great experimental results and observations achieved by Astronomy in the last decades revealed new unexplainable phenomena. Astronomers have conclusive new evidence that a recently discovered “dark galaxy” is, in fa...Great experimental results and observations achieved by Astronomy in the last decades revealed new unexplainable phenomena. Astronomers have conclusive new evidence that a recently discovered “dark galaxy” is, in fact, an object the size of a galaxy, made entirely of dark matter. They found that the speed of the Earth’s rotation varies randomly each day. 115 years ago, the Tunguska Event was observed, and astronomers still do not have an explanation of It. Main results of the present article are: 1) Dark galaxies explained by the spinning of their Dark Matter Cores with the surface speed at equator less than the escape velocity. Their Rotational Fission is not happening. Extrasolar systems do not emerge;2) 21-cm Emission explained by the self-annihilation of Dark Matter particles XIONs (5.3 μeV);3) Sun-Earth-Moon Interaction explained by the influence of the Sun’s and the Moon’s magnetic field on the electrical currents of the charged Geomagma (the 660-km layer), and, as a result, the Earth’s daylength varies;4) Tunguska Event explained by a huge atmospheric explosion of the Superbolide, which was a stable Dark Matter Bubble before entering the Earth’s atmosphere.展开更多
A coupled earth system model(ESM) has been developed at the Nanjing University of Information Science and Technology(NUIST) by using version 5.3 of the European Centre Hamburg Model(ECHAM), version 3.4 of the Nu...A coupled earth system model(ESM) has been developed at the Nanjing University of Information Science and Technology(NUIST) by using version 5.3 of the European Centre Hamburg Model(ECHAM), version 3.4 of the Nucleus for European Modelling of the Ocean(NEMO), and version 4.1 of the Los Alamos sea ice model(CICE). The model is referred to as NUIST ESM1(NESM1). Comprehensive and quantitative metrics are used to assess the model's major modes of climate variability most relevant to subseasonal-to-interannual climate prediction. The model's assessment is placed in a multi-model framework. The model yields a realistic annual mean and annual cycle of equatorial SST, and a reasonably realistic precipitation climatology, but has difficulty in capturing the spring–fall asymmetry and monsoon precipitation domains. The ENSO mode is reproduced well with respect to its spatial structure, power spectrum, phase locking to the annual cycle, and spatial structures of the central Pacific(CP)-ENSO and eastern Pacific(EP)-ENSO; however, the equatorial SST variability,biennial component of ENSO, and the amplitude of CP-ENSO are overestimated. The model captures realistic intraseasonal variability patterns, the vertical-zonal structures of the first two leading predictable modes of Madden–Julian Oscillation(MJO), and its eastward propagation; but the simulated MJO speed is significantly slower than observed. Compared with the T42 version, the high resolution version(T159) demonstrates improved simulation with respect to the climatology, interannual variance, monsoon–ENSO lead–lag correlation, spatial structures of the leading mode of the Asian–Australian monsoon rainfall variability, and the eastward propagation of the MJO.展开更多
Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam,...Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam, a novel seepage safety monitoring model was constructed in this study. The nonlinear influence processes of the antecedent reservoir water level and rainfall were assumed to follow normal distributions. The particle swarm optimization (PSO) algorithm was used to optimize the model parameters so as to raise the fitting accuracy. In addition, a mutation factor was introduced to simulate the sudden increase in the piezometric level induced by short-duration heavy rainfall and the possible historical extreme reservoir water level during a typhoon. In order to verify the efficacy of this model, the earth rock dam of the Siminghu Reservoir was used as an example. The piezometric level at the SW1-2 measuring point during Typhoon Fitow in 2013 was fitted with the present model, and a corresponding theoretical expression was established. Comparison of fitting results of the piezometric level obtained from the present statistical model and traditional statistical model with monitored values during the typhoon shows that the present model has a higher fitting accuracy and can simulate the uprush feature of the seepage pressure during the typhoon perfectly.展开更多
Using the low-resolution (T31, equivalent to 3.75°× 3.75°) version of the Community Earth System Model (CESM) from the National Center for Atmospheric Research (NCAR), a global climate simulation ...Using the low-resolution (T31, equivalent to 3.75°× 3.75°) version of the Community Earth System Model (CESM) from the National Center for Atmospheric Research (NCAR), a global climate simulation was carried out with fixed external forcing factors (1850 Common Era. (C.E.) conditions) for the past 2000 years. Based on the simulated results, spatio-temporal structures of surface air temperature, precipitation and internal variability, such as the E1 Nifio-Southem Oscillation (ENSO), the Atlantic Multi-decadal Oscilla- tion (AMO), the Pacific Decadal Oscillation (PDO), and the North Atlantic Oscillation (NAO), were compared with reanalysis datasets to evaluate the model performance. The results are as follows: 1) CESM showed a good performance in the long-term simulation and no significant climate drift over the past 2000 years; 2) climatological patterns of global and regional climate changes simulated by the CESM were reasonable compared with the reanalysis datasets; and 3) the CESM simulated internal natural variability of the climate system performs very well. The model not only reproduced the periodicity of ENSO, AMO and PDO events but also the 3-8 years vari- ability of the ENSO. The spatial distribution of the CESM-simulated NAO was also similar to the observed. However, because of weaker total irradiation and greenhouse gas concentration forcing in the simulation than the present, the model performances had some differences from the observations. Generally, the CESM showed a good performance in simulating the global climate and internal natu- ral variability of the climate system. This paves the way for other forced climate simulations for the past 2000 years by using the CESM.展开更多
In consideration of the online measurement of the component content in rare earth countercurrent extraction separation process, the soft sensor method based on hybrid modeling was proposed to measure the rare earth co...In consideration of the online measurement of the component content in rare earth countercurrent extraction separation process, the soft sensor method based on hybrid modeling was proposed to measure the rare earth component content. The hybrid models were composed of the extraction equilibrium calculation model and the Radial Basis Function (RBF) Neural Network (NN) error compensation model; the parameters of compensation model were optimized by the hierarchical genetic algorithms (HGA). In addition, application experiment research of this proposed method was carried out in the rare earth separation production process of a corporation. The result shows that this method is effective and can realize online measurement for the component content of rare earth in the countercurrent extraction.展开更多
In this study,the behavior of Gavoshan dam was evaluated during construction and the first impounding.A two-dimensional(2D) numerical analysis was conducted based on a finite difference method on the largest cross-s...In this study,the behavior of Gavoshan dam was evaluated during construction and the first impounding.A two-dimensional(2D) numerical analysis was conducted based on a finite difference method on the largest cross-section of the dam using the results of instrument measurements and back analysis.These evaluations will be completed in the case that back analysis is carried out in order to control the degree of the accuracy and the level of confidence of the measured behavior since each of the measurements could be controlled by comparing it to the result obtained from the numerical model.Following that,by comparing the results of the numerical analysis with the measured values,it is indicated that there is a proper consistency between these two values.Moreover,it was observed that the dam performance was suitable regarding the induced pore water pressure,the pore water pressure ratio r;,settlement,induced stresses,arching degree,and hydraulic fracturing probability during the construction and initial impounding periods.The results demonstrated that the maximum settlement of the core was 238 cm at the end of construction.In the following 6 years after construction(initial impounding and exploitation period),the accumulative settlement of the dam was 270 cm.It is clear that 88% of the total settlement of the dam took place during dam construction.The reason is that the clay core was smashed in the wet side,i.e.the optimum moisture content.Whereas the average curving ratio was 0.64 during dam construction; at the end of the initial impounding,the maximum amount of curving ratio in the upstream was 0.81,and the minimum(critical) amount in the downstream was 0.52.It was also concluded that this dam is safe in comparison with the behaviors of other similar dams in the world.展开更多
A series of centrifuge model tests of sandy slopes were conducted to study the dynamic behavior of pile-reinforced slopes subjected to various motions.Time histories of accelerations,bending moments and pile earth pre...A series of centrifuge model tests of sandy slopes were conducted to study the dynamic behavior of pile-reinforced slopes subjected to various motions.Time histories of accelerations,bending moments and pile earth pressures were obtained during excitation of the adjusted El Centro earthquake and a cyclic motion.Under a realistic earthquake,the overall response of the pile-reinforced slope is lower than that of the non-reinforced slope.The histories of bending moments and dynamic earth pressures reach their maximums soon after shaking started and then remain roughly stable until the end of shaking.Maximum moments occur at the height of 3.5 m,which is the deeper section of the pile,indicating the interface between the active loading and passive resistance regions.The dynamic earth pressures above the slope base steadily increase with the increase of height of pile.For the model under cyclic input motion,response amplitudes at different locations in the slope are almost the same,indicating no significant response amplification.Both the bending moment and earth pressure increase gradually over a long period.展开更多
In this paper,we study how coseismic deformations calculated in 1066 Earth models are affected by how the models treat Earth discontinuities.From the results of applying models 1066A(continuous)and 1066B(discontinuous...In this paper,we study how coseismic deformations calculated in 1066 Earth models are affected by how the models treat Earth discontinuities.From the results of applying models 1066A(continuous)and 1066B(discontinuous),we find that the difference in Love numbers of strike-slip and horizontal tensile sources are bigger than dip-slip and vertical tensile sources.Taken collectively,discontinuities have major effects on Green’s functions of four independent sources.For the near-field coseismic deformations of the 2013 Okhotsk earthquake(Mw 8.3),the overall differences between theoretical calculations in vertical displacement,geoid,and gravity changes caused by discontinuities are 10.52 percent,9.07 percent and 6.19 percent,with RMS errors of 0.624 mm,0.029 mm,and 0.063μGal,respectively.The difference in far-field displacements is small,compared with GPS data,and we can neglect this effect.For the shallow earthquake,2011 Tohoku-Oki earthquake(Mw 9.0),the differences in near-field displacements are 0.030 m(N-S),0.093 m(E-W),and 0.025 m(up-down)in our study area with the ARIA slip model,which gives results closer to GPS data than those from the USGS model.The difference in vertical displacements and gravity changes on the Earth’s surface caused by discontinuities are larger than 10 percent.The difference in the theoretical gravity changes at spatially fixed points truncated to degrees 60,as required by GRACE data,is 0.0016μGal and the discrepancy is 11 percent,with the theoretical spatial gravity changes from 1066B closer to observations than from 1066A.The results show that an Earth model with discontinuities in the medium has a large effect on the calculated coseismic deformations.展开更多
The authors review recent advances in the development of coupled Regional Earth System Models (RESMs),a field that is still in its early stages.To date,coupled regional atmosphere-ocean-sea ice,atmosphere-aerosol an...The authors review recent advances in the development of coupled Regional Earth System Models (RESMs),a field that is still in its early stages.To date,coupled regional atmosphere-ocean-sea ice,atmosphere-aerosol and atmosphere-biosphere models have been developed,but they have been applied onlyto limited regional settings.Much more work is thus needed to assess their transferability to a wide range of settings.Future challenges in regional climate modeling are identified,including the development of fully coupled RESMs encompassing not only atmosphere,ocean,cryosphere,biosphere,chemosphere,but also the human component in a fully interactive way.展开更多
Based on the experimental data of KY 3F 10∶Tm 3+ reported by Diaf, K ushida′s spectral overlap model (SOM) of energy transfer between J-multipl ets was studied. Firstly, with the help of the Inokuti-Hirayama an...Based on the experimental data of KY 3F 10∶Tm 3+ reported by Diaf, K ushida′s spectral overlap model (SOM) of energy transfer between J-multipl ets was studied. Firstly, with the help of the Inokuti-Hirayama and Yokota-Tan imoto models, the luminescence decay curve of 3H 4 of Tm 3+ ion was fitted, and the fitted values of corresponding interaction parameters C D A of energy transfer and C DD of energy migration were obtained. Seco ndly, by compared with Kushida′s SOM in which the relevant Judd-Ofelt approxim ative transition rates are known, the average overlap integrals of S DD and S DA were obtained. For S DD, how to treat the contributi on of the electronic-dipole (ED) crystal field transition forbidden by C 4v site symmetry in the calculation of S DD was discussed. For S DA we suggested that, by including the contribution of the phonon sideba nds in the analysis of oscillator strength of transition, Kushida′s SOM of ED- ED resonant energy transfer rate can be extended to non-resonant phonon-assist ed D-A energy transfer. The strengths and widths of phonon sidebands in this ex ample were discussed, and the results were reasonably good.展开更多
Earth System Models (ESMs) are fundamental tools for understanding climate-carbon feedback. An ESM version of the Flexible Global Ocean-Atmosphere-Land System model (FGOALS) was recently developed within the IPCC ...Earth System Models (ESMs) are fundamental tools for understanding climate-carbon feedback. An ESM version of the Flexible Global Ocean-Atmosphere-Land System model (FGOALS) was recently developed within the IPCC AR5 Coupled Model Intercomparison Project Phase 5 (CMIP5) modeling framework, and we describe the development of this model through the coupling of a dynamic global vegetation and terrestrial carbon model with FGOALS-s2. The performance of the coupled model is evaluated as follows. The simulated global total terrestrial gross primary production (GPP) is 124.4 PgC yr-I and net pri- mary production (NPP) is 50.9 PgC yr-1. The entire terrestrial carbon pools contain about 2009.9 PgC, comprising 628.2 PgC and 1381.6 PgC in vegetation and soil pools, respectively. Spatially, in the tropics, the seasonal cycle of NPP and net ecosystem production (NEP) exhibits a dipole mode across the equator due to migration of the monsoon rainbelt, while the seasonal cycle is not so significant in Leaf Area Index (LAI). In the subtropics, especially in the East Asian monsoon region, the seasonal cycle is obvious due to changes in temperature and precipitation from boreal winter to summer. Vegetation productivity in the northern mid-high latitudes is too low, possibly due to low soil moisture there. On the interannual timescale, the terrestrial ecosystem shows a strong response to ENSO. The model- simulated Nifio3.4 index and total terrestrial NEP are both characterized by a broad spectral peak in the range of 2-7 years. Further analysis indicates their correlation coefficient reaches -0.7 when NEP lags the Nifio3.4 index for about 1-2 months.展开更多
基金This research was funded by the National Natural Science Foundation of China(Grant No.52174113)the Young Jinggang Scholars Award Program in Jiangxi Province,China(Grant No.QNJG2018051)the“Thousand Talents”of Jiangxi Province,China(Grant No.jxsq2019201043).
文摘In the process of ion-adsorption rare earth ore leaching,the migration characteristics of the wetting front in multi-hole injection holes and the influence of wetting front intersection effect on the migration distance of wetting fronts are still unclear.Besides,wetting front migration distance and leaching time are usually required to optimize the leaching process.In this study,wetting front migration tests of ionadsorption rare earth ores during the multi-hole fluid injection(the spacing between injection holes was 10 cm,12 cm and 14 cm)and single-hole fluid injection were completed under the constant water head height.At the pre-intersection stage,the wetting front migration laws of ion-adsorption rare earth ores during the multi-hole fluid injection and single-hole fluid injection were identical.At the postintersection stage,the intersection accelerated the wetting front migration.By using the Darcy’s law,the intersection effect of wetting fronts during the multi-hole liquid injection was transformed into the water head height directly above the intersection.Finally,based on the Green-Ampt model,a wetting front migration model of ion-adsorption rare earth ores during the multi-hole unsaturated liquid injection was established.Error analysis results showed that the proposed model can accurately simulate the infiltration process under experimental conditions.The research results enrich the infiltration law and theory of ion-adsorption rare earth ores during the multi-hole liquid injection,and this study provides a scientific basis for optimizing the liquid injection well pattern parameters of ion-adsorption rare earth in situ leaching in the future.
文摘The aim of this study is to characterize soil/reinforcement interaction in reinforced earth structures. The study showed that the internal behavior of this type of structure depends on a number of factors, including the engineering backfill, the reinforcement and the soil/reinforcement interaction. The study also showed that the soil-reinforcement interaction phenomenon is a fairly complex mechanism that depends on the applied load, the geometry of the structure, the characteristics of the soil and a set of parameters characterizing the nailing: density, number and length of reinforcements, inclination of the reinforcements in relation to the sliding surface, mechanical characteristics of the reinforcements and, in particular, the relative stiffness of the reinforcements and the soil. The results showed that the tensile forces developed in the reinforcement are not entirely reversible, and that the soil at the interface undergoes permanent deformation, leading to the appearance of irreversible tensile forces in the reinforcement.
基金This work was jointly funded by the National Natural Science Foundation of China(Grant Nos.42205168,41830967,and 42175163)the Youth Innovation Promotion Association CAS(2021073)the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(EarthLab).
文摘The soil freezing and thawing process affects soil physical properties,such as heat conductivity,heat capacity,and hydraulic conductivity in frozen ground regions,and further affects the processes of soil energy,hydrology,and carbon and nitrogen cycles.In this study,the calculation of freezing and thawing front parameterization was implemented into the earth system model of the Chinese Academy of Sciences(CAS-ESM)and its land component,the Common Land Model(CoLM),to investigate the dynamic change of freezing and thawing fronts and their effects.Our results showed that the developed models could reproduce the soil freezing and thawing process and the dynamic change of freezing and thawing fronts.The regionally averaged value of active layer thickness in the permafrost regions was 1.92 m,and the regionally averaged trend value was 0.35 cm yr–1.The regionally averaged value of maximum freezing depth in the seasonally frozen ground regions was 2.15 m,and the regionally averaged trend value was–0.48 cm yr–1.The active layer thickness increased while the maximum freezing depth decreased year by year.These results contribute to a better understanding of the freezing and thawing cycle process.
基金supported by National Natural Science Foundation of China,China(No.42004016)HuBei Natural Science Fund,China(No.2020CFB329)+1 种基金HuNan Natural Science Fund,China(No.2023JJ60559,2023JJ60560)the State Key Laboratory of Geodesy and Earth’s Dynamics self-deployment project,China(No.S21L6101)。
文摘Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.
基金funding support from National Natural Science Foundation of China(Grant No.52179109)Jiangsu Provincial Natural Science Foundation(Grant No.BK20230967)Open Research Fund of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University(Grant No.KF2022-02).
文摘Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,the failure mode and the earth pressure acting on the rigid retaining wall with EPS geofoam inclusions and granular backfills(henceforth referred to as EPS-wall),under limited surcharge loading are investigated through two-and three-dimensional model tests.The testing results show that different from the sliding of almost all the backfill in the EPS-wall under semi-infinite surcharge loading,only an approximately triangular backfill slides in the wall under limited surcharge loading.The distribution of the lateral earth pressure on the EPS-wall under limited surcharge loading is non-linear,and the distribution changes from the increase of the wall depth to the decrease with the increase of the limited surcharge loading.An approach based on the force equilibrium of a differential element is developed to predict the lateral earth pressure behind the EPS-wall subjected to limited surcharge loading,and its performance was fully validated by the three-dimensional model tests.
基金supported by the National Natural Science Foundation of China(Grant No.42230608)the UK-China Research&Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP)China as part of the Newton Fund.
文摘This paper provides a systematic evaluation of the ability of 12 Earth System Models(ESMs)participating in the Coupled Model Intercomparison Project Phase 6(CMIP6)to simulate the spatial inhomogeneity of the atmospheric carbon dioxide(CO_(2))concentration.The multi-model ensemble mean(MME)can reasonably simulate the increasing trend of CO_(2) concentration from 1850 to 2014,compared with the observation data from the Scripps CO_(2) Program and CMIP6 prescribed data,and improves upon the CMIP5 MME CO_(2) concentration(which is overestimated after 1950).The growth rate of CO_(2) concentration in the northern hemisphere(NH)is higher than that in the southern hemisphere(SH),with the highest growth rate in the mid-latitudes of the NH.The MME can also reasonably simulate the seasonal amplitude of CO_(2) concentration,which is larger in the NH than in the SH and grows in amplitude after the 1950s(especially in the NH).Although the results of the MME are reasonable,there is a large spread among ESMs,and the difference between the ESMs increases with time.The MME results show that regions with relatively large CO_(2) concentrations(such as northern Russia,eastern China,Southeast Asia,the eastern United States,northern South America,and southern Africa)have greater seasonal variability and also exhibit a larger inter-model spread.Compared with CMIP5,the CMIP6 MME simulates an average spatial distribution of CO_(2) concentration that is much closer to the site observations,but the CMIP6-inter-model spread is larger.The inter-model differences of the annual means and seasonal cycles of atmospheric CO_(2) concentration are both attributed to the differences in natural sources and sinks of CO_(2) between the simulations.
基金supported by the National Technology Extension Fund of Forestry,Forest Vegetation Carbon Storage Monitoring Technology Based on Watershed Algorithm ([2019]06)Fundamental Research Funds for the Central Universities (No.PTYX202107).
文摘Since the launch of the Google Earth Engine(GEE)cloud platform in 2010,it has been widely used,leading to a wealth of valuable information.However,the potential of GEE for forest resource management has not been fully exploited.To extract dominant woody plant species,GEE combined Sen-tinel-1(S1)and Sentinel-2(S2)data with the addition of the National Forest Resources Inventory(NFRI)and topographic data,resulting in a 10 m resolution multimodal geospatial dataset for subtropical forests in southeast China.Spectral and texture features,red-edge bands,and vegetation indices of S1 and S2 data were computed.A hierarchical model obtained information on forest distribution and area and the dominant woody plant species.The results suggest that combining data sources from the S1 winter and S2 yearly ranges enhances accuracy in forest distribution and area extraction compared to using either data source independently.Similarly,for dominant woody species recognition,using S1 winter and S2 data across all four seasons was accurate.Including terrain factors and removing spatial correlation from NFRI sample points further improved the recognition accuracy.The optimal forest extraction achieved an overall accuracy(OA)of 97.4%and a maplevel image classification efficacy(MICE)of 96.7%.OA and MICE were 83.6%and 80.7%for dominant species extraction,respectively.The high accuracy and efficacy values indicate that the hierarchical recognition model based on multimodal remote sensing data performed extremely well for extracting information about dominant woody plant species.Visualizing the results using the GEE application allows for an intuitive display of forest and species distribution,offering significant convenience for forest resource monitoring.
文摘Compressed earth blocks (CEB) are an alternative to cement blocks in the construction of wall masonry. However, the optimal architectural construction methods for adequate thermal comfort for occupants in hot and arid environments are not mastered. This article evaluates the influence of architectural and constructive modes of buildings made of CEB walls and concrete block walls, to optimize and compare their thermal comfort in the hot and dry tropical climate of Ouagadougou, Burkina Faso. Two identical pilot buildings whose envelopes are made of CEB and concrete blocks were monitored for this study. The thermal models of the pilot buildings were implemented in the SketchUp software using an extension of EnergyPlus. The models were empirically validated after calibration against measured thermal data from the buildings. The models were used to do a parametric analysis for optimization of the thermal performances by simulating plaster coatings on the exterior of walls, airtight openings and natural ventilation depending on external weather conditions. The results show that the CEB building displays 7016 hours of discomfort, equivalent to 80.1% of the time, and the concrete building displays 6948 hours of discomfort, equivalent to 79.3% of the time. The optimization by modifications reduced the discomfort to 2918 and 3125 hours respectively;i.e. equivalent to only 33.3% for the CEB building and 35.7% for the concrete building. More study should evaluate thermal optimizations in buildings in real time of usage such as residential buildings commonly used by the local middle class. The use of CEB as a construction material and passive means of improving thermal comfort is a suitable ecological and economical option to replace cementitious material.
文摘Great experimental results and observations achieved by Astronomy in the last decades revealed new unexplainable phenomena. Astronomers have conclusive new evidence that a recently discovered “dark galaxy” is, in fact, an object the size of a galaxy, made entirely of dark matter. They found that the speed of the Earth’s rotation varies randomly each day. 115 years ago, the Tunguska Event was observed, and astronomers still do not have an explanation of It. Main results of the present article are: 1) Dark galaxies explained by the spinning of their Dark Matter Cores with the surface speed at equator less than the escape velocity. Their Rotational Fission is not happening. Extrasolar systems do not emerge;2) 21-cm Emission explained by the self-annihilation of Dark Matter particles XIONs (5.3 μeV);3) Sun-Earth-Moon Interaction explained by the influence of the Sun’s and the Moon’s magnetic field on the electrical currents of the charged Geomagma (the 660-km layer), and, as a result, the Earth’s daylength varies;4) Tunguska Event explained by a huge atmospheric explosion of the Superbolide, which was a stable Dark Matter Bubble before entering the Earth’s atmosphere.
基金supported by the Research Innovation Program for college graduates of Jiangsu Province (CXLX13 487)
文摘A coupled earth system model(ESM) has been developed at the Nanjing University of Information Science and Technology(NUIST) by using version 5.3 of the European Centre Hamburg Model(ECHAM), version 3.4 of the Nucleus for European Modelling of the Ocean(NEMO), and version 4.1 of the Los Alamos sea ice model(CICE). The model is referred to as NUIST ESM1(NESM1). Comprehensive and quantitative metrics are used to assess the model's major modes of climate variability most relevant to subseasonal-to-interannual climate prediction. The model's assessment is placed in a multi-model framework. The model yields a realistic annual mean and annual cycle of equatorial SST, and a reasonably realistic precipitation climatology, but has difficulty in capturing the spring–fall asymmetry and monsoon precipitation domains. The ENSO mode is reproduced well with respect to its spatial structure, power spectrum, phase locking to the annual cycle, and spatial structures of the central Pacific(CP)-ENSO and eastern Pacific(EP)-ENSO; however, the equatorial SST variability,biennial component of ENSO, and the amplitude of CP-ENSO are overestimated. The model captures realistic intraseasonal variability patterns, the vertical-zonal structures of the first two leading predictable modes of Madden–Julian Oscillation(MJO), and its eastward propagation; but the simulated MJO speed is significantly slower than observed. Compared with the T42 version, the high resolution version(T159) demonstrates improved simulation with respect to the climatology, interannual variance, monsoon–ENSO lead–lag correlation, spatial structures of the leading mode of the Asian–Australian monsoon rainfall variability, and the eastward propagation of the MJO.
基金supported by the National Natural Science Foundation of China(Grants No.51179108 and 51679151)the Special Fund for the Public Welfare Industry of the Ministry of Water Resources of China(Grant No.201501033)+1 种基金the National Key Research and Development Program(Grant No.2016YFC0401603)the Program Sponsored for Scientific Innovation Research of College Graduates in Jiangsu Province(Grant No.KYZZ15_0140)
文摘Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam, a novel seepage safety monitoring model was constructed in this study. The nonlinear influence processes of the antecedent reservoir water level and rainfall were assumed to follow normal distributions. The particle swarm optimization (PSO) algorithm was used to optimize the model parameters so as to raise the fitting accuracy. In addition, a mutation factor was introduced to simulate the sudden increase in the piezometric level induced by short-duration heavy rainfall and the possible historical extreme reservoir water level during a typhoon. In order to verify the efficacy of this model, the earth rock dam of the Siminghu Reservoir was used as an example. The piezometric level at the SW1-2 measuring point during Typhoon Fitow in 2013 was fitted with the present model, and a corresponding theoretical expression was established. Comparison of fitting results of the piezometric level obtained from the present statistical model and traditional statistical model with monitored values during the typhoon shows that the present model has a higher fitting accuracy and can simulate the uprush feature of the seepage pressure during the typhoon perfectly.
基金Under the auspices of National Basic Research Program of China(No.2010CB950102)Strategic and Special Frontier Project of Science and Technology of Chinese Academy of Sciences(No.XDA05080800)+3 种基金National Natural Science Foundation of China(No.41371209,41420104002)Special Research Fund for Doctoral Discipline of Higher Education Institutions(No.20133207110015)Natural Science Foundation of Jiangsu Higher Education Institutions(No.14KJA170002)Priority Academic Program Development of Jiangsu Higher Education Institutions(No.164320H101)
文摘Using the low-resolution (T31, equivalent to 3.75°× 3.75°) version of the Community Earth System Model (CESM) from the National Center for Atmospheric Research (NCAR), a global climate simulation was carried out with fixed external forcing factors (1850 Common Era. (C.E.) conditions) for the past 2000 years. Based on the simulated results, spatio-temporal structures of surface air temperature, precipitation and internal variability, such as the E1 Nifio-Southem Oscillation (ENSO), the Atlantic Multi-decadal Oscilla- tion (AMO), the Pacific Decadal Oscillation (PDO), and the North Atlantic Oscillation (NAO), were compared with reanalysis datasets to evaluate the model performance. The results are as follows: 1) CESM showed a good performance in the long-term simulation and no significant climate drift over the past 2000 years; 2) climatological patterns of global and regional climate changes simulated by the CESM were reasonable compared with the reanalysis datasets; and 3) the CESM simulated internal natural variability of the climate system performs very well. The model not only reproduced the periodicity of ENSO, AMO and PDO events but also the 3-8 years vari- ability of the ENSO. The spatial distribution of the CESM-simulated NAO was also similar to the observed. However, because of weaker total irradiation and greenhouse gas concentration forcing in the simulation than the present, the model performances had some differences from the observations. Generally, the CESM showed a good performance in simulating the global climate and internal natu- ral variability of the climate system. This paves the way for other forced climate simulations for the past 2000 years by using the CESM.
文摘In consideration of the online measurement of the component content in rare earth countercurrent extraction separation process, the soft sensor method based on hybrid modeling was proposed to measure the rare earth component content. The hybrid models were composed of the extraction equilibrium calculation model and the Radial Basis Function (RBF) Neural Network (NN) error compensation model; the parameters of compensation model were optimized by the hierarchical genetic algorithms (HGA). In addition, application experiment research of this proposed method was carried out in the rare earth separation production process of a corporation. The result shows that this method is effective and can realize online measurement for the component content of rare earth in the countercurrent extraction.
文摘In this study,the behavior of Gavoshan dam was evaluated during construction and the first impounding.A two-dimensional(2D) numerical analysis was conducted based on a finite difference method on the largest cross-section of the dam using the results of instrument measurements and back analysis.These evaluations will be completed in the case that back analysis is carried out in order to control the degree of the accuracy and the level of confidence of the measured behavior since each of the measurements could be controlled by comparing it to the result obtained from the numerical model.Following that,by comparing the results of the numerical analysis with the measured values,it is indicated that there is a proper consistency between these two values.Moreover,it was observed that the dam performance was suitable regarding the induced pore water pressure,the pore water pressure ratio r;,settlement,induced stresses,arching degree,and hydraulic fracturing probability during the construction and initial impounding periods.The results demonstrated that the maximum settlement of the core was 238 cm at the end of construction.In the following 6 years after construction(initial impounding and exploitation period),the accumulative settlement of the dam was 270 cm.It is clear that 88% of the total settlement of the dam took place during dam construction.The reason is that the clay core was smashed in the wet side,i.e.the optimum moisture content.Whereas the average curving ratio was 0.64 during dam construction; at the end of the initial impounding,the maximum amount of curving ratio in the upstream was 0.81,and the minimum(critical) amount in the downstream was 0.52.It was also concluded that this dam is safe in comparison with the behaviors of other similar dams in the world.
基金Project(50639060) supported by the National Natural Science Foundation of ChinaProject(610103002) supported by the State Key Laboratory of Hydroscience and Engineering,Tsinghua University,China
文摘A series of centrifuge model tests of sandy slopes were conducted to study the dynamic behavior of pile-reinforced slopes subjected to various motions.Time histories of accelerations,bending moments and pile earth pressures were obtained during excitation of the adjusted El Centro earthquake and a cyclic motion.Under a realistic earthquake,the overall response of the pile-reinforced slope is lower than that of the non-reinforced slope.The histories of bending moments and dynamic earth pressures reach their maximums soon after shaking started and then remain roughly stable until the end of shaking.Maximum moments occur at the height of 3.5 m,which is the deeper section of the pile,indicating the interface between the active loading and passive resistance regions.The dynamic earth pressures above the slope base steadily increase with the increase of height of pile.For the model under cyclic input motion,response amplitudes at different locations in the slope are almost the same,indicating no significant response amplification.Both the bending moment and earth pressure increase gradually over a long period.
基金the National Natural Science Foundation of China(No.41604067,41974093,41331066,and 41774088)the Basic Research Fund of Chinese Academy of Surveying and Mapping(No.AR 1906)+1 种基金the special project of high-resolution Earth observation system(42-Y20A09-9001-17/18)the Key Research Program of Frontier Sciences Chinese Academy of Sciences(QYZDY-SSWSYS003).
文摘In this paper,we study how coseismic deformations calculated in 1066 Earth models are affected by how the models treat Earth discontinuities.From the results of applying models 1066A(continuous)and 1066B(discontinuous),we find that the difference in Love numbers of strike-slip and horizontal tensile sources are bigger than dip-slip and vertical tensile sources.Taken collectively,discontinuities have major effects on Green’s functions of four independent sources.For the near-field coseismic deformations of the 2013 Okhotsk earthquake(Mw 8.3),the overall differences between theoretical calculations in vertical displacement,geoid,and gravity changes caused by discontinuities are 10.52 percent,9.07 percent and 6.19 percent,with RMS errors of 0.624 mm,0.029 mm,and 0.063μGal,respectively.The difference in far-field displacements is small,compared with GPS data,and we can neglect this effect.For the shallow earthquake,2011 Tohoku-Oki earthquake(Mw 9.0),the differences in near-field displacements are 0.030 m(N-S),0.093 m(E-W),and 0.025 m(up-down)in our study area with the ARIA slip model,which gives results closer to GPS data than those from the USGS model.The difference in vertical displacements and gravity changes on the Earth’s surface caused by discontinuities are larger than 10 percent.The difference in the theoretical gravity changes at spatially fixed points truncated to degrees 60,as required by GRACE data,is 0.0016μGal and the discrepancy is 11 percent,with the theoretical spatial gravity changes from 1066B closer to observations than from 1066A.The results show that an Earth model with discontinuities in the medium has a large effect on the calculated coseismic deformations.
基金supported by the National Key Research and Development Program of China[grant number 2016YFA0600704]the National Natural Science Foundation of China[grant number Y71301U801]
文摘The authors review recent advances in the development of coupled Regional Earth System Models (RESMs),a field that is still in its early stages.To date,coupled regional atmosphere-ocean-sea ice,atmosphere-aerosol and atmosphere-biosphere models have been developed,but they have been applied onlyto limited regional settings.Much more work is thus needed to assess their transferability to a wide range of settings.Future challenges in regional climate modeling are identified,including the development of fully coupled RESMs encompassing not only atmosphere,ocean,cryosphere,biosphere,chemosphere,but also the human component in a fully interactive way.
文摘Based on the experimental data of KY 3F 10∶Tm 3+ reported by Diaf, K ushida′s spectral overlap model (SOM) of energy transfer between J-multipl ets was studied. Firstly, with the help of the Inokuti-Hirayama and Yokota-Tan imoto models, the luminescence decay curve of 3H 4 of Tm 3+ ion was fitted, and the fitted values of corresponding interaction parameters C D A of energy transfer and C DD of energy migration were obtained. Seco ndly, by compared with Kushida′s SOM in which the relevant Judd-Ofelt approxim ative transition rates are known, the average overlap integrals of S DD and S DA were obtained. For S DD, how to treat the contributi on of the electronic-dipole (ED) crystal field transition forbidden by C 4v site symmetry in the calculation of S DD was discussed. For S DA we suggested that, by including the contribution of the phonon sideba nds in the analysis of oscillator strength of transition, Kushida′s SOM of ED- ED resonant energy transfer rate can be extended to non-resonant phonon-assist ed D-A energy transfer. The strengths and widths of phonon sidebands in this ex ample were discussed, and the results were reasonably good.
基金supported by the CAS Strategic Priority Research Program(Grant No.XDA05110303)the"973"programs(Grant Nos.2012CB417203 and 2010CB950404)+1 种基金the"863"program(Grant No.2010AA012305)the National Science Foundation of China(Grant Nos.41023002 and 40805038)
文摘Earth System Models (ESMs) are fundamental tools for understanding climate-carbon feedback. An ESM version of the Flexible Global Ocean-Atmosphere-Land System model (FGOALS) was recently developed within the IPCC AR5 Coupled Model Intercomparison Project Phase 5 (CMIP5) modeling framework, and we describe the development of this model through the coupling of a dynamic global vegetation and terrestrial carbon model with FGOALS-s2. The performance of the coupled model is evaluated as follows. The simulated global total terrestrial gross primary production (GPP) is 124.4 PgC yr-I and net pri- mary production (NPP) is 50.9 PgC yr-1. The entire terrestrial carbon pools contain about 2009.9 PgC, comprising 628.2 PgC and 1381.6 PgC in vegetation and soil pools, respectively. Spatially, in the tropics, the seasonal cycle of NPP and net ecosystem production (NEP) exhibits a dipole mode across the equator due to migration of the monsoon rainbelt, while the seasonal cycle is not so significant in Leaf Area Index (LAI). In the subtropics, especially in the East Asian monsoon region, the seasonal cycle is obvious due to changes in temperature and precipitation from boreal winter to summer. Vegetation productivity in the northern mid-high latitudes is too low, possibly due to low soil moisture there. On the interannual timescale, the terrestrial ecosystem shows a strong response to ENSO. The model- simulated Nifio3.4 index and total terrestrial NEP are both characterized by a broad spectral peak in the range of 2-7 years. Further analysis indicates their correlation coefficient reaches -0.7 when NEP lags the Nifio3.4 index for about 1-2 months.