A physically-based numerical three-dimensional earthen dam piping failure model is developed for homogeneous and zoned soil dams.This model is an erosion model,coupled with force/moment equilibrium analyses.Orifice fl...A physically-based numerical three-dimensional earthen dam piping failure model is developed for homogeneous and zoned soil dams.This model is an erosion model,coupled with force/moment equilibrium analyses.Orifice flow and two-dimensional(2D)shallow water equations(SWE)are solved to simulate dam break flows at different breaching stages.Erosion rates of different soils with different construction compaction efforts are calculated using corresponding erosion formulae.The dam's real shape,soil properties,and surrounding area are programmed.Large outer 2D-SWE grids are used to control upstream and downstream hydraulic conditions and control the boundary conditions of orifice flow,and inner 2D-SWE flow is used to scour soil and perform force/moment equilibrium analyses.This model is validated using the European Commission IMPACT(Investigation of Extreme Flood Processes and Uncertainty)Test#5 in Norway,Teton Dam failure in Idaho,USA,and Quail Creek Dike failure in Utah,USA.All calculated peak outflows are within 10%errors of observed values.Simulation results show that,for a V-shaped dam like Teton Dam,a piping breach location at the abutment tends to result in a smaller peak breach outflow than the piping breach location at the dam's center;and if Teton Dam had broken from its center for internal erosion,a peak outflow of 117851 m'/s,which is 81%larger than the peak outflow of 65120 m3/s released from its right abutment,would have been released from Teton Dam.A lower piping inlet elevation tends to cause a faster/earlier piping breach than a higher piping inlet elevation.展开更多
The construction of dams for intercepting and storing water has altered surface water distributions, landsea water exchanges, and the load response of the solid Earth. The lack of accurate estimation of reservoir prop...The construction of dams for intercepting and storing water has altered surface water distributions, landsea water exchanges, and the load response of the solid Earth. The lack of accurate estimation of reservoir properties through the land surface and hydrological models can lead to water storage simulation and extraction errors. This impact is particularly evident in many artificial reservoirs in China. The study aims to comprehensively assess the spatiotemporal distribution and trends of water storage in medium and large reservoirs(MLRs) in Chinese mainland during 1950-2016, and to investigate the gravity,displacement, and strain effects induced by the reservoir mass concentration using the load elasticity theory. In addition, the impoundment contributions of MLRs to the relative sea level changes were assessed using a sea-level equation. The results show impoundment increases in the MLRs during1950-2016, particularly in the Yangtze River(Changjiang) and southern basins, causing significant elastic load effects in the surrounding areas of the reservoirs and increasing the relative sea level in China's offshore. However, long-term groundwater estimation trends are overestimated and underestimated in the Yangtze River and southwestern basins, respectively, due to the neglect of the MLRs impacts or the uncertainty of the hydrological model's output(e.g., soil moisture, etc.). The construction of MLRs may reduce the water mass input from land to the ocean, thus slowing global sea level rise. The results of the impact of human activities on the regional water cycle provide important references and data support for improving the integration of hydrological models, evaluating Earth's viscoelastic responses under longterm reservoir storage, enhancing in-situ and satellite geodetic measurements, and identifying the main factors driving sea level changes.展开更多
Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam,...Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam, a novel seepage safety monitoring model was constructed in this study. The nonlinear influence processes of the antecedent reservoir water level and rainfall were assumed to follow normal distributions. The particle swarm optimization (PSO) algorithm was used to optimize the model parameters so as to raise the fitting accuracy. In addition, a mutation factor was introduced to simulate the sudden increase in the piezometric level induced by short-duration heavy rainfall and the possible historical extreme reservoir water level during a typhoon. In order to verify the efficacy of this model, the earth rock dam of the Siminghu Reservoir was used as an example. The piezometric level at the SW1-2 measuring point during Typhoon Fitow in 2013 was fitted with the present model, and a corresponding theoretical expression was established. Comparison of fitting results of the piezometric level obtained from the present statistical model and traditional statistical model with monitored values during the typhoon shows that the present model has a higher fitting accuracy and can simulate the uprush feature of the seepage pressure during the typhoon perfectly.展开更多
In this paper, a model of overtopping risk under the joint effects of floods and wind waves, which is based on risk analysis theory and takes into account the uncertainties of floods, wind waves, reservoir capacity an...In this paper, a model of overtopping risk under the joint effects of floods and wind waves, which is based on risk analysis theory and takes into account the uncertainties of floods, wind waves, reservoir capacity and discharge capacity of the spillway, is proposed and applied to the Chengbihe Reservoir in Baise City in Guangxi Zhuang Autonomous Region. The simulated results indicate that the flood control limiting level can be raised by 0.40 m under the condition that the reservoir overtopping risk is controlled within a mean variance of 5×10-6. As a result, the reservoir storage will increase to 16 million m3 and electrical energy generation and other functions of the reservoir will also increase greatly.展开更多
Based on raw data from dams damaged in the Wenchuan earthquake, including many that were severely damaged, characteristics and factors that influenced the damage are discussed in this paper. Findings from this study i...Based on raw data from dams damaged in the Wenchuan earthquake, including many that were severely damaged, characteristics and factors that influenced the damage are discussed in this paper. Findings from this study include: severely damaged dams were densely distributed along the seismologic fault; small dams, especially small earth-rock dams, had the most serious damage that was caused by a variety of factors; the most serious damage was caused by seismic waves; damage was aggregated by aftershocks; and the extent of the damage patterns increased with the seismic intensity. Damage patterns varied in different intensity zones and cracking was the most common type of damage. Most of the dams had a good base with relatively high bearing capacity, and the walls of the earth-rock dams were mostly of clay soil. This type of base and body material mitigated some of the damage to dams. Reservoir maintenance and other factors also have a significant impact on the seismic safety of the dam. Finally, some recommendations to reduce seismic damage to dams are proposed.展开更多
It is important to study the mining technology under structures for raising the coal resources recovery ratio. Based on the geological and mining conditions, the top coal caving harmonic mining technique in thick coal...It is important to study the mining technology under structures for raising the coal resources recovery ratio. Based on the geological and mining conditions, the top coal caving harmonic mining technique in thick coal seam beneath the earth dam was put forward and studied. The 5 factors such as the panel mining direction, panel size, panel location, panel mining sequence and panel advance velocity were taken into account in this technique. The dam movement and deformation were predicted after the thick coal seam mining and the effects of mining on the dam were studied. By setting up the surveying stations on the dam, the movement and deformation of the dam were observed during mining. By taking some protective measures on the dam, the top coal caving mining technique in thick coal seam beneath the earth dam was carried out successfully. The study demonstrates that harmonic mining in thick coal seam is feasible under the dam. The safety of the earth dam after mining was ensured and the coal resources recovery ratio was improved.展开更多
Based on the natural disaster risk evaluation mode, a quantitative danger degree evaluation model was developed to evaluate the danger degree of earth dam reservoir staged operation in the flood season. A formula for ...Based on the natural disaster risk evaluation mode, a quantitative danger degree evaluation model was developed to evaluate the danger degree of earth dam reservoir staged operation in the flood season. A formula for the overtopping risk rate of the earth dam reservoir staged operation was established, with consideration of the joint effect of flood and wind waves in the flood sub-seasons with the Monte Carlo method, and the integrated overtopping risk rate for the whole flood season was obtained via the total probability approach. A composite normalized function was used to transform the dam overtopping risk rate into the danger degree, on a scale of 0-1. Danger degree gradating criteria were divided by four significant characteristic values of the dam overtopping rate, and corresponding guidelines for danger evaluation are explained in detail in this paper. Examples indicated that the dam overtopping danger degree of the Chengbihe Reservoir in China was 0.33-0.57, within the range of moderate danger level, and the flood-limiting water level (FLWL) can be adjusted to 185.00 m for the early and main flood seasons, and 185.00-187.50 m for the late flood season. The proposed quantitative model offers a theoretical basis for determination of the value of the danger degree of an earth dam reservoir under normal operation as well as the optimal scheduling scheme for the reservoir in each stage of the flood season.展开更多
In this study,the behavior of Gavoshan dam was evaluated during construction and the first impounding.A two-dimensional(2D) numerical analysis was conducted based on a finite difference method on the largest cross-s...In this study,the behavior of Gavoshan dam was evaluated during construction and the first impounding.A two-dimensional(2D) numerical analysis was conducted based on a finite difference method on the largest cross-section of the dam using the results of instrument measurements and back analysis.These evaluations will be completed in the case that back analysis is carried out in order to control the degree of the accuracy and the level of confidence of the measured behavior since each of the measurements could be controlled by comparing it to the result obtained from the numerical model.Following that,by comparing the results of the numerical analysis with the measured values,it is indicated that there is a proper consistency between these two values.Moreover,it was observed that the dam performance was suitable regarding the induced pore water pressure,the pore water pressure ratio r;,settlement,induced stresses,arching degree,and hydraulic fracturing probability during the construction and initial impounding periods.The results demonstrated that the maximum settlement of the core was 238 cm at the end of construction.In the following 6 years after construction(initial impounding and exploitation period),the accumulative settlement of the dam was 270 cm.It is clear that 88% of the total settlement of the dam took place during dam construction.The reason is that the clay core was smashed in the wet side,i.e.the optimum moisture content.Whereas the average curving ratio was 0.64 during dam construction; at the end of the initial impounding,the maximum amount of curving ratio in the upstream was 0.81,and the minimum(critical) amount in the downstream was 0.52.It was also concluded that this dam is safe in comparison with the behaviors of other similar dams in the world.展开更多
Numerical methods are helpful for understanding the behaviors of geotechnical installations.However,the computational cost sometimes may become prohibitive when structural reliability analysis is performed,due to repe...Numerical methods are helpful for understanding the behaviors of geotechnical installations.However,the computational cost sometimes may become prohibitive when structural reliability analysis is performed,due to repetitive calls to the deterministic solver.In this paper,we show how accurate and efficient reliability analyses of geotechnical installations can be performed by directly coupling geotechnical software with a reliability solver.An earth dam is used as the study object under different operating conditions.The limit equilibrium method of Morgenstern-Price is used to calculate factors of safety and find the critical slip surface.The conmercial software packages Seep/W and Slope/W are coupled with StRAnD structural reliability software.Reliability indices of critical probabilistic surfaces are evaluated by the first-and second-order structural reliability methods(FORM and SORM),as well as by importance sampling Monte Carlo(ISMC)simulation.By means of sensitivity analysis,the effective friction angle(φ′)is found to be the most relevant uncertain geotechnical parameter for dam equilibrium.The correlations between different geotechnical properties are shown to be relevant in terms of equilibrium reliability indices.Finally,it is shown herein that a critical slip surface,identified in terms of the minimum factor of safety(FS),is not the critical surface in terms of the reliability index.展开更多
Based on research studies currently being carried out at Dalian University of Technology, some important aspects for the earthquake safety assessmcnt of concrete dams are reviewed and discussed. First, the rate-depend...Based on research studies currently being carried out at Dalian University of Technology, some important aspects for the earthquake safety assessmcnt of concrete dams are reviewed and discussed. First, the rate-dependent behavior of concrcte subjected to earthquake loading is examined, emphasizing the properties of concrete under cyclic and biaxial loading conditions. Second, a modified four-parameter Hsieh-Ting-Chen viscoplastic consistency model is developed to simulate the rate-dependent behavior of concrete. The earthquake response of a 278m high arch dam is analyzed, and the results show that the strain-rate effects become noticeable in the inelastic range, Third, a more accurate non-smooth Newton algorithm for the solution of three-dimensional frictional contact problems is developed to study the joint opening effects of arch dams during strong earthquakes. Such effects on two nearly 300m high arch dams have been studied. It was found that the canyon shape has great influence on the magnitude and distribution of the joint opening along the dam axis. Fourth, the scaled boundary finite element method presented by Song and Wolf is employed to study the dam-reservoir-foundation interaction effects of concrete dams. Particular emphases were placed on the variation of foundation stiffness and the anisotropic behavior of the foundation material on the dynamic response of concrete dams. Finally, nonlinear modeling of concrete to study the damage evolution of concrete dams during strong earthquakes is discussed. An elastic-damage mechanics approach for damage prediction of concrete gravity dams is described as an example. These findings are helpful in understanding the dynamic behavior of concrete dams and promoting the improvement of seismic safety assessment methods.展开更多
Stability of earth dams during earthquakes has been a major concern for gcotechnical engineers in seismic active regions. Liquefaction induced slope failure occurred at the upstream slope of a major earth dam in the s...Stability of earth dams during earthquakes has been a major concern for gcotechnical engineers in seismic active regions. Liquefaction induced slope failure occurred at the upstream slope of a major earth dam in the suburb of Beijing, China, during the 1976 Tangshan Earthquake. The gravelly soil with loose initial condition liquefied under relatively small ground vibration. In recent years, a major seismic rehabilitation project was carried out on a similar earth dam nearby using dumped quarry stone. Seismic stability analysis was carried out using model test, finite element simulation, and pseudostatic slope stability program after taking into account the influence of excess pore pressure.展开更多
Based on model tests of earthen dam breach due to piping failure, a numerical model was developed.A key difference from previous research is the assumption that the cross-section of the pipe channel is an arch, with a...Based on model tests of earthen dam breach due to piping failure, a numerical model was developed.A key difference from previous research is the assumption that the cross-section of the pipe channel is an arch, with a rectangle at the bottom and a semicircle at the top before the collapse of the pipe roof, rather than a rectangular or circular cross-section.A shear stress-based erosion rate formula was utilized, and the arched pipe tunnel was assumed to enlarge along its length and width until the overlying soil could no longer maintain stability.Orifice flow and open channel flow were adopted to calculate the breach flow discharge for pressure and free surface flows, respectively.The collapse of the pipe roof was determined by comparing the weight of the overlying soil and the cohesion of the soil on the two sidewalls of the pipe.After the collapse, overtopping failure dominated, and the limit equilibrium method was adopted to estimate the stability of the breach slope when the water flow overtopped.In addition, incomplete and base erosion, as well as one-and two-sided breaches were taken into account.The USDAARS-HERU model test P1, with detailed measured data, was used as a case study, and two artificially filled earthen dam failure cases were studied to verify the model.Feedback analysis demonstrates that the proposed model can provide satisfactory results for modeling the breach flow discharge and breach development process.Sensitivity analysis shows that the soil erodibility and initial piping position significantly affect the prediction of the breach flow discharge.Furthermore, a comparison with a well-known numerical model shows that the proposed model performs better than the NWS BREACH model.展开更多
After treated with low concentration of La^3 + , the rate of producing active oxygen free radical, the relative permeability of cell membrane, the contents of bivalent iron ion in wheat seedling leaves under water st...After treated with low concentration of La^3 + , the rate of producing active oxygen free radical, the relative permeability of cell membrane, the contents of bivalent iron ion in wheat seedling leaves under water stress were determined. The results show that in wheat seedling leaves, feasible concentrations of La^3 + decreases the accumulation of active oxygen free radical, inhibits the increase of the relative permeability of cell membrane, reduces the content of peroxidation product MDA of membrane lipid, and prevents the plant cell producing more bivalent iron ion which can catalyzed the reaction of Haber-weiss and Fenton to produce more superoxide anion. In addition, purified plasma membrane was isolated by aqueous two-phase partitioning from wheat seedling leaves. The reduction rate of Fe(CN)6^3- by purified plasma membrane in La^3+ -treated wheat seedling leaves is different from those in the absence of La^3+ under water stress. The changing trend of the redox activity to La^3+ is similar to that of the content of Fe^2+ . The results reveal that extraneous La^3+ can alleviate the damages of cell membrane caused by water stress via promoting the activity of redox system and the ability of eliminating ROS in wheat seedling leaves.展开更多
Many dangerous effects arise from seepage through earth dams based on pervious layer. Therefore, the dam embankment must be provided with seepage control measures to avoid such effects. In the present work, different ...Many dangerous effects arise from seepage through earth dams based on pervious layer. Therefore, the dam embankment must be provided with seepage control measures to avoid such effects. In the present work, different control methods were used such as flat slopes, toe drainage systems, and a catch drain in the tail water. The hydraulic performance of each control measure was evaluated using the analytical solutions, previously developed, to estimate the seepage quantity (q), the height of seepage surface (h<sub>3</sub>), and the coordinates of the free surface (h<sub>x</sub>). Study was conducted on a physical model for a dam embankment having a top width (b) = 10.0 meter, height (H<sub>d</sub>) = 30.0 meter, and slope factor (m) = 1.5. The obtained results were analyzed and presented in dimensionless charts. Results showed that, the used control measures possess a great effect on the characteristics of seepage through earth dams based on pervious foundations. A comparative study was conducted between the studied toe drainage systems to enable the designers the better choice for design purposes.展开更多
The earth-rockfill dam is one of the primary dam types in the selection of high dams to be constructed in Western China, since it is characterized by favorable adaptability of the dam foundation; full utilization of l...The earth-rockfill dam is one of the primary dam types in the selection of high dams to be constructed in Western China, since it is characterized by favorable adaptability of the dam foundation; full utilization of local earth, rock, and building-excavated materials; low construction cost; and low cement consumption. Many major technical issues regarding earth-rockfill dams with a height of over 250 m were studied and solved successfully in the construction of the 261.5 m Nuozhadu earth core rockfill dam. This paper describes research achievements and basic conclusions; systematically summarizes the accumulated experiences from the construction of the Nuozhadu Dam and other high earth-rockfill dams; and discusses major technical issues, such as deformation control, seepage control, dam slope stability, safety and control of flood discharging, safety and quality control of dam construction, safety assessments, early warning, and other key technical difficulties. This study also provides a reference and technological support for the future construction of 300 m high earth-rockfill dams.展开更多
Careful monitoring in the earth dams, to measure deformation caused by settlement and movement has always been a concern for engineers in the field. In order to measure settlement and deformation of earth dams, usuall...Careful monitoring in the earth dams, to measure deformation caused by settlement and movement has always been a concern for engineers in the field. In order to measure settlement and deformation of earth dams, usually the precision instruments of settlement set and combined Inclinometer that is commonly referred to IS instrument, will be used. In some dams, because the thickness of alluvium is high and there is no possibility of alluvium removal (technically and economically and in terms of performance), there is no possibility to place the end of IS instrument (precision instruments of Inclinometer-settlement set) in the rock foundation. Inevitably, have to accept installing pipes in the weak and the deformable alluvial foundation that this leads to errors in the calculation of the actual settlement (absolute settlement) in different parts of the dam body. The purpose of this paper is to present new and refine criteria for predicting settlement and deformation in earth dams. The study is based on conditions in three dams with a deformation quite alluvial (Agh Chai, Narmashir and Gilan-e Gharb) to provide settlement criteria affected by alluvial foundation. To achieve this goal, the settlement of dams was simulated by using finite difference method with FLAC3D software and then the modeling results were compared with reading IS instrument. In the end, the caliber of the model and validate the results, by using regression analysis techniques and scrutinized modeling parameters with real situations and then by using MATLAB software and Curve Fitting Toolbox, a new criteria for the settlement based on elasticity modulus, cohesion, friction angle, density of earth dam and alluvial foundation was obtained. The results of these studies show that, by using the new criteria measures, the amount of settlement and deformation for the dams with alluvial foundation can be corrected after instrument readings and the error rate in reading IS instrument can be greatly reduced.展开更多
This paper describes some special features of the Wenchuan earthquake that affected dam safety. Damage and performance of dams, primarily for four dams over 100 m high located in the affected earthquake area, are brie...This paper describes some special features of the Wenchuan earthquake that affected dam safety. Damage and performance of dams, primarily for four dams over 100 m high located in the affected earthquake area, are briefly described. Lessons learned related to dam safety from this devastating earthquake are preliminarily drawn. As the seismic safety of high dams during strong earthquakes has gained more attention around the world, some critical issues related to dam construction in China are considered and extensively discussed. Questions such as "Why is dam construction necessary in earthquake prone countries such as China?", "Can we accurately evaluate the seismic safety of high dams in China?", "Did reservoir impounding of the Zipingpu and Three Gorges Projects trigger the Wenchuan Earthquake in some way?" and "What is the strategic priority of dam safety for large dams in China?" are discussed. Finally, the corresponding tactics with response to the challenge are suggested and recent preliminary progress mainly achieved in IWHR is briefly introduced.展开更多
To assess the potential risk of mixed rare earths Changle for human embryo we used transplacental micronucleus test and single cell gel electrophoresis (SCGE) technique to detect DNA damage of embryo. The rats were ad...To assess the potential risk of mixed rare earths Changle for human embryo we used transplacental micronucleus test and single cell gel electrophoresis (SCGE) technique to detect DNA damage of embryo. The rats were administered respectively 0.3, 2, 5 and 20 mg·kg -1 mixed rare earths Changle every day orally from 6th to 18th day after pregnancy. The results show that the number of cells with micronucleus significantly increases as compared with the control except 0.3 mg·kg -1 group, which appears to be a dose effect relationship. The number of comet star cell greatly increases with increasing contamination dose as compared with the control except 0 3 mg·kg -1 group, and also displays a dose effect relationship. In conclusion, though mixed rare earth Changle is restricted by placenta membrane to enter embryo body, and more than 2 mg·kg -1 mixed rare earth Changle may cross placenta barrier and cause DNA damage of hepatocyte and developing erythrocyte of rat embryo.展开更多
1 Introduction Sedimentary rocks archive important information for understanding how the earth system operates and how life and environments have evolved through earth history.Properly identifying characteristics of s...1 Introduction Sedimentary rocks archive important information for understanding how the earth system operates and how life and environments have evolved through earth history.Properly identifying characteristics of sedimentary rocks,along with the subsequent interpretation of depositional processes and sedimentary environments in a basin or locality.展开更多
文摘A physically-based numerical three-dimensional earthen dam piping failure model is developed for homogeneous and zoned soil dams.This model is an erosion model,coupled with force/moment equilibrium analyses.Orifice flow and two-dimensional(2D)shallow water equations(SWE)are solved to simulate dam break flows at different breaching stages.Erosion rates of different soils with different construction compaction efforts are calculated using corresponding erosion formulae.The dam's real shape,soil properties,and surrounding area are programmed.Large outer 2D-SWE grids are used to control upstream and downstream hydraulic conditions and control the boundary conditions of orifice flow,and inner 2D-SWE flow is used to scour soil and perform force/moment equilibrium analyses.This model is validated using the European Commission IMPACT(Investigation of Extreme Flood Processes and Uncertainty)Test#5 in Norway,Teton Dam failure in Idaho,USA,and Quail Creek Dike failure in Utah,USA.All calculated peak outflows are within 10%errors of observed values.Simulation results show that,for a V-shaped dam like Teton Dam,a piping breach location at the abutment tends to result in a smaller peak breach outflow than the piping breach location at the dam's center;and if Teton Dam had broken from its center for internal erosion,a peak outflow of 117851 m'/s,which is 81%larger than the peak outflow of 65120 m3/s released from its right abutment,would have been released from Teton Dam.A lower piping inlet elevation tends to cause a faster/earlier piping breach than a higher piping inlet elevation.
基金supported by the National Natural Science Foundation of China (No.42274110 and 42374106)long-term monitoring project in the Three Gorges Reservoir area (the National Natural Science Foundation of China,No.41874090 and 41504065)。
文摘The construction of dams for intercepting and storing water has altered surface water distributions, landsea water exchanges, and the load response of the solid Earth. The lack of accurate estimation of reservoir properties through the land surface and hydrological models can lead to water storage simulation and extraction errors. This impact is particularly evident in many artificial reservoirs in China. The study aims to comprehensively assess the spatiotemporal distribution and trends of water storage in medium and large reservoirs(MLRs) in Chinese mainland during 1950-2016, and to investigate the gravity,displacement, and strain effects induced by the reservoir mass concentration using the load elasticity theory. In addition, the impoundment contributions of MLRs to the relative sea level changes were assessed using a sea-level equation. The results show impoundment increases in the MLRs during1950-2016, particularly in the Yangtze River(Changjiang) and southern basins, causing significant elastic load effects in the surrounding areas of the reservoirs and increasing the relative sea level in China's offshore. However, long-term groundwater estimation trends are overestimated and underestimated in the Yangtze River and southwestern basins, respectively, due to the neglect of the MLRs impacts or the uncertainty of the hydrological model's output(e.g., soil moisture, etc.). The construction of MLRs may reduce the water mass input from land to the ocean, thus slowing global sea level rise. The results of the impact of human activities on the regional water cycle provide important references and data support for improving the integration of hydrological models, evaluating Earth's viscoelastic responses under longterm reservoir storage, enhancing in-situ and satellite geodetic measurements, and identifying the main factors driving sea level changes.
基金supported by the National Natural Science Foundation of China(Grants No.51179108 and 51679151)the Special Fund for the Public Welfare Industry of the Ministry of Water Resources of China(Grant No.201501033)+1 种基金the National Key Research and Development Program(Grant No.2016YFC0401603)the Program Sponsored for Scientific Innovation Research of College Graduates in Jiangsu Province(Grant No.KYZZ15_0140)
文摘Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam, a novel seepage safety monitoring model was constructed in this study. The nonlinear influence processes of the antecedent reservoir water level and rainfall were assumed to follow normal distributions. The particle swarm optimization (PSO) algorithm was used to optimize the model parameters so as to raise the fitting accuracy. In addition, a mutation factor was introduced to simulate the sudden increase in the piezometric level induced by short-duration heavy rainfall and the possible historical extreme reservoir water level during a typhoon. In order to verify the efficacy of this model, the earth rock dam of the Siminghu Reservoir was used as an example. The piezometric level at the SW1-2 measuring point during Typhoon Fitow in 2013 was fitted with the present model, and a corresponding theoretical expression was established. Comparison of fitting results of the piezometric level obtained from the present statistical model and traditional statistical model with monitored values during the typhoon shows that the present model has a higher fitting accuracy and can simulate the uprush feature of the seepage pressure during the typhoon perfectly.
基金supported by the National Natural Science Foundation of China (Grant No 50609005)the Science Foundation of Guangxi Education Department (Grant No 200708LX099)the Science Foundation of Guangxi University (Grant No X071096)
文摘In this paper, a model of overtopping risk under the joint effects of floods and wind waves, which is based on risk analysis theory and takes into account the uncertainties of floods, wind waves, reservoir capacity and discharge capacity of the spillway, is proposed and applied to the Chengbihe Reservoir in Baise City in Guangxi Zhuang Autonomous Region. The simulated results indicate that the flood control limiting level can be raised by 0.40 m under the condition that the reservoir overtopping risk is controlled within a mean variance of 5×10-6. As a result, the reservoir storage will increase to 16 million m3 and electrical energy generation and other functions of the reservoir will also increase greatly.
基金Special Scientific Found for Seismic Industry Under Grant No.201008005
文摘Based on raw data from dams damaged in the Wenchuan earthquake, including many that were severely damaged, characteristics and factors that influenced the damage are discussed in this paper. Findings from this study include: severely damaged dams were densely distributed along the seismologic fault; small dams, especially small earth-rock dams, had the most serious damage that was caused by a variety of factors; the most serious damage was caused by seismic waves; damage was aggregated by aftershocks; and the extent of the damage patterns increased with the seismic intensity. Damage patterns varied in different intensity zones and cracking was the most common type of damage. Most of the dams had a good base with relatively high bearing capacity, and the walls of the earth-rock dams were mostly of clay soil. This type of base and body material mitigated some of the damage to dams. Reservoir maintenance and other factors also have a significant impact on the seismic safety of the dam. Finally, some recommendations to reduce seismic damage to dams are proposed.
基金sponsored by the National Natural Science Foundation of China(No.51374092)
文摘It is important to study the mining technology under structures for raising the coal resources recovery ratio. Based on the geological and mining conditions, the top coal caving harmonic mining technique in thick coal seam beneath the earth dam was put forward and studied. The 5 factors such as the panel mining direction, panel size, panel location, panel mining sequence and panel advance velocity were taken into account in this technique. The dam movement and deformation were predicted after the thick coal seam mining and the effects of mining on the dam were studied. By setting up the surveying stations on the dam, the movement and deformation of the dam were observed during mining. By taking some protective measures on the dam, the top coal caving mining technique in thick coal seam beneath the earth dam was carried out successfully. The study demonstrates that harmonic mining in thick coal seam is feasible under the dam. The safety of the earth dam after mining was ensured and the coal resources recovery ratio was improved.
基金supported by the National Natural Science Foundation of China(Grants No.51569003 and 51579059)the Natural Science Foundation of Guangxi Province(Grant No.2017GXNSFAA198361)the Innovation Project of Guangxi Graduate Education(Grant No.YCSW2017052)
文摘Based on the natural disaster risk evaluation mode, a quantitative danger degree evaluation model was developed to evaluate the danger degree of earth dam reservoir staged operation in the flood season. A formula for the overtopping risk rate of the earth dam reservoir staged operation was established, with consideration of the joint effect of flood and wind waves in the flood sub-seasons with the Monte Carlo method, and the integrated overtopping risk rate for the whole flood season was obtained via the total probability approach. A composite normalized function was used to transform the dam overtopping risk rate into the danger degree, on a scale of 0-1. Danger degree gradating criteria were divided by four significant characteristic values of the dam overtopping rate, and corresponding guidelines for danger evaluation are explained in detail in this paper. Examples indicated that the dam overtopping danger degree of the Chengbihe Reservoir in China was 0.33-0.57, within the range of moderate danger level, and the flood-limiting water level (FLWL) can be adjusted to 185.00 m for the early and main flood seasons, and 185.00-187.50 m for the late flood season. The proposed quantitative model offers a theoretical basis for determination of the value of the danger degree of an earth dam reservoir under normal operation as well as the optimal scheduling scheme for the reservoir in each stage of the flood season.
文摘In this study,the behavior of Gavoshan dam was evaluated during construction and the first impounding.A two-dimensional(2D) numerical analysis was conducted based on a finite difference method on the largest cross-section of the dam using the results of instrument measurements and back analysis.These evaluations will be completed in the case that back analysis is carried out in order to control the degree of the accuracy and the level of confidence of the measured behavior since each of the measurements could be controlled by comparing it to the result obtained from the numerical model.Following that,by comparing the results of the numerical analysis with the measured values,it is indicated that there is a proper consistency between these two values.Moreover,it was observed that the dam performance was suitable regarding the induced pore water pressure,the pore water pressure ratio r;,settlement,induced stresses,arching degree,and hydraulic fracturing probability during the construction and initial impounding periods.The results demonstrated that the maximum settlement of the core was 238 cm at the end of construction.In the following 6 years after construction(initial impounding and exploitation period),the accumulative settlement of the dam was 270 cm.It is clear that 88% of the total settlement of the dam took place during dam construction.The reason is that the clay core was smashed in the wet side,i.e.the optimum moisture content.Whereas the average curving ratio was 0.64 during dam construction; at the end of the initial impounding,the maximum amount of curving ratio in the upstream was 0.81,and the minimum(critical) amount in the downstream was 0.52.It was also concluded that this dam is safe in comparison with the behaviors of other similar dams in the world.
基金financial support by the Coordination for the Improvement of Higher Education Personnel(CAPES)for research funding(Grant No.88882.145758/2017-01)the Brazilian National Council of Scientific and Technological Development(CNPq)。
文摘Numerical methods are helpful for understanding the behaviors of geotechnical installations.However,the computational cost sometimes may become prohibitive when structural reliability analysis is performed,due to repetitive calls to the deterministic solver.In this paper,we show how accurate and efficient reliability analyses of geotechnical installations can be performed by directly coupling geotechnical software with a reliability solver.An earth dam is used as the study object under different operating conditions.The limit equilibrium method of Morgenstern-Price is used to calculate factors of safety and find the critical slip surface.The conmercial software packages Seep/W and Slope/W are coupled with StRAnD structural reliability software.Reliability indices of critical probabilistic surfaces are evaluated by the first-and second-order structural reliability methods(FORM and SORM),as well as by importance sampling Monte Carlo(ISMC)simulation.By means of sensitivity analysis,the effective friction angle(φ′)is found to be the most relevant uncertain geotechnical parameter for dam equilibrium.The correlations between different geotechnical properties are shown to be relevant in terms of equilibrium reliability indices.Finally,it is shown herein that a critical slip surface,identified in terms of the minimum factor of safety(FS),is not the critical surface in terms of the reliability index.
基金National Natural Science Foundation of China Under Grant No.50139010
文摘Based on research studies currently being carried out at Dalian University of Technology, some important aspects for the earthquake safety assessmcnt of concrete dams are reviewed and discussed. First, the rate-dependent behavior of concrcte subjected to earthquake loading is examined, emphasizing the properties of concrete under cyclic and biaxial loading conditions. Second, a modified four-parameter Hsieh-Ting-Chen viscoplastic consistency model is developed to simulate the rate-dependent behavior of concrete. The earthquake response of a 278m high arch dam is analyzed, and the results show that the strain-rate effects become noticeable in the inelastic range, Third, a more accurate non-smooth Newton algorithm for the solution of three-dimensional frictional contact problems is developed to study the joint opening effects of arch dams during strong earthquakes. Such effects on two nearly 300m high arch dams have been studied. It was found that the canyon shape has great influence on the magnitude and distribution of the joint opening along the dam axis. Fourth, the scaled boundary finite element method presented by Song and Wolf is employed to study the dam-reservoir-foundation interaction effects of concrete dams. Particular emphases were placed on the variation of foundation stiffness and the anisotropic behavior of the foundation material on the dynamic response of concrete dams. Finally, nonlinear modeling of concrete to study the damage evolution of concrete dams during strong earthquakes is discussed. An elastic-damage mechanics approach for damage prediction of concrete gravity dams is described as an example. These findings are helpful in understanding the dynamic behavior of concrete dams and promoting the improvement of seismic safety assessment methods.
文摘Stability of earth dams during earthquakes has been a major concern for gcotechnical engineers in seismic active regions. Liquefaction induced slope failure occurred at the upstream slope of a major earth dam in the suburb of Beijing, China, during the 1976 Tangshan Earthquake. The gravelly soil with loose initial condition liquefied under relatively small ground vibration. In recent years, a major seismic rehabilitation project was carried out on a similar earth dam nearby using dumped quarry stone. Seismic stability analysis was carried out using model test, finite element simulation, and pseudostatic slope stability program after taking into account the influence of excess pore pressure.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC0404805)the National Natural Science Foundation of China(Grants No.51779153 and 51539006)+1 种基金the Central Public-interest Scientific Institution Basal Research Fund(Grant No.Y717012)the Natural Science Foundation of Jiangsu Province(Grant No.BK20161121)
文摘Based on model tests of earthen dam breach due to piping failure, a numerical model was developed.A key difference from previous research is the assumption that the cross-section of the pipe channel is an arch, with a rectangle at the bottom and a semicircle at the top before the collapse of the pipe roof, rather than a rectangular or circular cross-section.A shear stress-based erosion rate formula was utilized, and the arched pipe tunnel was assumed to enlarge along its length and width until the overlying soil could no longer maintain stability.Orifice flow and open channel flow were adopted to calculate the breach flow discharge for pressure and free surface flows, respectively.The collapse of the pipe roof was determined by comparing the weight of the overlying soil and the cohesion of the soil on the two sidewalls of the pipe.After the collapse, overtopping failure dominated, and the limit equilibrium method was adopted to estimate the stability of the breach slope when the water flow overtopped.In addition, incomplete and base erosion, as well as one-and two-sided breaches were taken into account.The USDAARS-HERU model test P1, with detailed measured data, was used as a case study, and two artificially filled earthen dam failure cases were studied to verify the model.Feedback analysis demonstrates that the proposed model can provide satisfactory results for modeling the breach flow discharge and breach development process.Sensitivity analysis shows that the soil erodibility and initial piping position significantly affect the prediction of the breach flow discharge.Furthermore, a comparison with a well-known numerical model shows that the proposed model performs better than the NWS BREACH model.
基金Project supported bythe National Natural Science Foundation of China (30270744) and 863 Program(2002AA241121)
文摘After treated with low concentration of La^3 + , the rate of producing active oxygen free radical, the relative permeability of cell membrane, the contents of bivalent iron ion in wheat seedling leaves under water stress were determined. The results show that in wheat seedling leaves, feasible concentrations of La^3 + decreases the accumulation of active oxygen free radical, inhibits the increase of the relative permeability of cell membrane, reduces the content of peroxidation product MDA of membrane lipid, and prevents the plant cell producing more bivalent iron ion which can catalyzed the reaction of Haber-weiss and Fenton to produce more superoxide anion. In addition, purified plasma membrane was isolated by aqueous two-phase partitioning from wheat seedling leaves. The reduction rate of Fe(CN)6^3- by purified plasma membrane in La^3+ -treated wheat seedling leaves is different from those in the absence of La^3+ under water stress. The changing trend of the redox activity to La^3+ is similar to that of the content of Fe^2+ . The results reveal that extraneous La^3+ can alleviate the damages of cell membrane caused by water stress via promoting the activity of redox system and the ability of eliminating ROS in wheat seedling leaves.
文摘Many dangerous effects arise from seepage through earth dams based on pervious layer. Therefore, the dam embankment must be provided with seepage control measures to avoid such effects. In the present work, different control methods were used such as flat slopes, toe drainage systems, and a catch drain in the tail water. The hydraulic performance of each control measure was evaluated using the analytical solutions, previously developed, to estimate the seepage quantity (q), the height of seepage surface (h<sub>3</sub>), and the coordinates of the free surface (h<sub>x</sub>). Study was conducted on a physical model for a dam embankment having a top width (b) = 10.0 meter, height (H<sub>d</sub>) = 30.0 meter, and slope factor (m) = 1.5. The obtained results were analyzed and presented in dimensionless charts. Results showed that, the used control measures possess a great effect on the characteristics of seepage through earth dams based on pervious foundations. A comparative study was conducted between the studied toe drainage systems to enable the designers the better choice for design purposes.
文摘The earth-rockfill dam is one of the primary dam types in the selection of high dams to be constructed in Western China, since it is characterized by favorable adaptability of the dam foundation; full utilization of local earth, rock, and building-excavated materials; low construction cost; and low cement consumption. Many major technical issues regarding earth-rockfill dams with a height of over 250 m were studied and solved successfully in the construction of the 261.5 m Nuozhadu earth core rockfill dam. This paper describes research achievements and basic conclusions; systematically summarizes the accumulated experiences from the construction of the Nuozhadu Dam and other high earth-rockfill dams; and discusses major technical issues, such as deformation control, seepage control, dam slope stability, safety and control of flood discharging, safety and quality control of dam construction, safety assessments, early warning, and other key technical difficulties. This study also provides a reference and technological support for the future construction of 300 m high earth-rockfill dams.
文摘Careful monitoring in the earth dams, to measure deformation caused by settlement and movement has always been a concern for engineers in the field. In order to measure settlement and deformation of earth dams, usually the precision instruments of settlement set and combined Inclinometer that is commonly referred to IS instrument, will be used. In some dams, because the thickness of alluvium is high and there is no possibility of alluvium removal (technically and economically and in terms of performance), there is no possibility to place the end of IS instrument (precision instruments of Inclinometer-settlement set) in the rock foundation. Inevitably, have to accept installing pipes in the weak and the deformable alluvial foundation that this leads to errors in the calculation of the actual settlement (absolute settlement) in different parts of the dam body. The purpose of this paper is to present new and refine criteria for predicting settlement and deformation in earth dams. The study is based on conditions in three dams with a deformation quite alluvial (Agh Chai, Narmashir and Gilan-e Gharb) to provide settlement criteria affected by alluvial foundation. To achieve this goal, the settlement of dams was simulated by using finite difference method with FLAC3D software and then the modeling results were compared with reading IS instrument. In the end, the caliber of the model and validate the results, by using regression analysis techniques and scrutinized modeling parameters with real situations and then by using MATLAB software and Curve Fitting Toolbox, a new criteria for the settlement based on elasticity modulus, cohesion, friction angle, density of earth dam and alluvial foundation was obtained. The results of these studies show that, by using the new criteria measures, the amount of settlement and deformation for the dams with alluvial foundation can be corrected after instrument readings and the error rate in reading IS instrument can be greatly reduced.
基金National Natural Science Foundation of China Under Grant No.90510017Public Welfare Project in Water Conservancy Under Grant No. 200701004
文摘This paper describes some special features of the Wenchuan earthquake that affected dam safety. Damage and performance of dams, primarily for four dams over 100 m high located in the affected earthquake area, are briefly described. Lessons learned related to dam safety from this devastating earthquake are preliminarily drawn. As the seismic safety of high dams during strong earthquakes has gained more attention around the world, some critical issues related to dam construction in China are considered and extensively discussed. Questions such as "Why is dam construction necessary in earthquake prone countries such as China?", "Can we accurately evaluate the seismic safety of high dams in China?", "Did reservoir impounding of the Zipingpu and Three Gorges Projects trigger the Wenchuan Earthquake in some way?" and "What is the strategic priority of dam safety for large dams in China?" are discussed. Finally, the corresponding tactics with response to the challenge are suggested and recent preliminary progress mainly achieved in IWHR is briefly introduced.
文摘To assess the potential risk of mixed rare earths Changle for human embryo we used transplacental micronucleus test and single cell gel electrophoresis (SCGE) technique to detect DNA damage of embryo. The rats were administered respectively 0.3, 2, 5 and 20 mg·kg -1 mixed rare earths Changle every day orally from 6th to 18th day after pregnancy. The results show that the number of cells with micronucleus significantly increases as compared with the control except 0.3 mg·kg -1 group, which appears to be a dose effect relationship. The number of comet star cell greatly increases with increasing contamination dose as compared with the control except 0 3 mg·kg -1 group, and also displays a dose effect relationship. In conclusion, though mixed rare earth Changle is restricted by placenta membrane to enter embryo body, and more than 2 mg·kg -1 mixed rare earth Changle may cross placenta barrier and cause DNA damage of hepatocyte and developing erythrocyte of rat embryo.
文摘1 Introduction Sedimentary rocks archive important information for understanding how the earth system operates and how life and environments have evolved through earth history.Properly identifying characteristics of sedimentary rocks,along with the subsequent interpretation of depositional processes and sedimentary environments in a basin or locality.