The traditional ground direct current method is not suitable for leakage detection of underground diaphragm walls in foundation pits because of its low accuracy and poor anti-noise ability.Here,we propose a joint surf...The traditional ground direct current method is not suitable for leakage detection of underground diaphragm walls in foundation pits because of its low accuracy and poor anti-noise ability.Here,we propose a joint surface-borehole observation device for leakage electric fi eld detection to achieve rapid measurement of the electric fi eld distribution characteristics at ground level in the foundation pit,thus enabling rapid localization of leakage points.We first establish the mechanism and basic equation of the leakage electric field response by combining the electric field formed by electrokinetic effect(EK)and the stable electric fi eld formed by conduction current in a combined leakage channel.Then,the fi nite–infi nite element coupling method is used to solve the electric fi eld equation to simulate the responses of a three-dimensional foundation pit leakage model.Furthermore,we conduct numerical simulations of diff erent pit models to investigate the infl uencing factors of the detection device and response characteristics of the change in the properties of the leakage channel.The results demonstrate that the proposed joint surface-borehole observation device can effi ciently reveal anomalous potential caused by leakage,and the amplitude of the electric fi eld generated by EK can eff ectively strengthen the leakage electric fi eld signal at the leakage,thus improving detection accuracy and effi ciency.展开更多
The leakage occurs during operation of the dam in Liuhuanggou reservoir. It’s a threat to the safety of the people’s lives and property in downstream. In order to eliminate the hidden danger of reservoir, ensure the...The leakage occurs during operation of the dam in Liuhuanggou reservoir. It’s a threat to the safety of the people’s lives and property in downstream. In order to eliminate the hidden danger of reservoir, ensure the safety of the dam, play better the function of flood control and water storage of the reservoir etc., we apply the 3D electrical resistivity tomography detecting technology and volume rendering image processing technology, make the measurement in field, process the data and combine the field survey to find out the leakage channels inside the dam. The results show that the 3D resistivity images appear the low resistivity zone corresponding with the leakage channels. There are two main leakage channels that come from different location inside the dam. It is feasible to diagnose the leakage in earth rock-fill dam by applying 3D electrical resistivity tomography.展开更多
In this paper,the electrical fields along the insulator surface under different scenarios,such as asymmetric pollution on top/bottom surface,and uneven circumferential distribution of surface pollution,have been calcu...In this paper,the electrical fields along the insulator surface under different scenarios,such as asymmetric pollution on top/bottom surface,and uneven circumferential distribution of surface pollution,have been calculated with finite element method for field simulation.Tests on artificial pollution insulators are conducted to study the 50% withstand voltage U50 of artificial pollution suspension insulators under different NSDD(non-soluble deposit density)and asymmetric pollution on the top/bottom surface,and study the change of leakage current with air humidity under different voltage and different ESDD(equivalent salt deposit density).The result shows that asymmetric top/bottom surface pollution has a greater impact on the insulator electrical field distribution,and the leakage current will jump under low air humidity,if had large ESDD,which has practical meanings to the anti-pollution design of the transmission line under different pollution levels across the country.展开更多
Polyparapheneylene (PPP) was doped by CeCl 4 and FeCl 3, and then electrorheological (ER) suspensions were prepared by polymer powder with high dielectric constants and silicone oil. Under electric field, the change...Polyparapheneylene (PPP) was doped by CeCl 4 and FeCl 3, and then electrorheological (ER) suspensions were prepared by polymer powder with high dielectric constants and silicone oil. Under electric field, the change of viscosity, leakage current density and relative physical constants were measured. The relationships among electric field strength, particle concentration, viscosity and leakage current density were discussed. The speed of electrorheological response and the recovery time were studied and corresponding mechanisms were investigated.展开更多
This paper compares the different inversion results of three different earth rock-fill dam models with the actual leakage passages by performing isotope tracing tests and resistivity tomographic tests. The accuracy of...This paper compares the different inversion results of three different earth rock-fill dam models with the actual leakage passages by performing isotope tracing tests and resistivity tomographic tests. The accuracy of the experimental results is evaluated, and the characteristics of these two methods are analyzed. As a result, some significant references are offered for earth rock-fill dam’s hidden defects detection. The experimental results show that the leakage and the direction of the seepage can be judged by isotope tracing tests, meanwhile, the degree of the leakage can be confirmed through the determination of the horizontal seepage velocity and the vertical seepage velocity, but it is difficult to properly determine the position of leakage passages and the range of leakage. Relatively speaking, the positions of the leakage passages can be accurately and directly displayed through resistivity tomographic tests. The experiment results show that the resistivity tomographic method is much better than isotope tracing method with regard to earth rock-fill dam’s hidden defects detection, and the resistivity tomographic method expresses much more convenience and much higher precision than isotope tracing method.展开更多
基金partially supported by the National Natural Science Foundation of China (Nos. 41864004 and 41674077)Jiangxi Provincial Academic Leaders (Youth) Training Program (No. 20204BCJL23058)Open Fund from Engineering Research Center for Seismic Disaster Prevention and Engineering Geological Disaster Detection of Jiangxi Province (SDGD202102)。
文摘The traditional ground direct current method is not suitable for leakage detection of underground diaphragm walls in foundation pits because of its low accuracy and poor anti-noise ability.Here,we propose a joint surface-borehole observation device for leakage electric fi eld detection to achieve rapid measurement of the electric fi eld distribution characteristics at ground level in the foundation pit,thus enabling rapid localization of leakage points.We first establish the mechanism and basic equation of the leakage electric field response by combining the electric field formed by electrokinetic effect(EK)and the stable electric fi eld formed by conduction current in a combined leakage channel.Then,the fi nite–infi nite element coupling method is used to solve the electric fi eld equation to simulate the responses of a three-dimensional foundation pit leakage model.Furthermore,we conduct numerical simulations of diff erent pit models to investigate the infl uencing factors of the detection device and response characteristics of the change in the properties of the leakage channel.The results demonstrate that the proposed joint surface-borehole observation device can effi ciently reveal anomalous potential caused by leakage,and the amplitude of the electric fi eld generated by EK can eff ectively strengthen the leakage electric fi eld signal at the leakage,thus improving detection accuracy and effi ciency.
文摘The leakage occurs during operation of the dam in Liuhuanggou reservoir. It’s a threat to the safety of the people’s lives and property in downstream. In order to eliminate the hidden danger of reservoir, ensure the safety of the dam, play better the function of flood control and water storage of the reservoir etc., we apply the 3D electrical resistivity tomography detecting technology and volume rendering image processing technology, make the measurement in field, process the data and combine the field survey to find out the leakage channels inside the dam. The results show that the 3D resistivity images appear the low resistivity zone corresponding with the leakage channels. There are two main leakage channels that come from different location inside the dam. It is feasible to diagnose the leakage in earth rock-fill dam by applying 3D electrical resistivity tomography.
基金Project Supported by Key Technology Research Programof SGCC(SGSC[2005]115)
文摘In this paper,the electrical fields along the insulator surface under different scenarios,such as asymmetric pollution on top/bottom surface,and uneven circumferential distribution of surface pollution,have been calculated with finite element method for field simulation.Tests on artificial pollution insulators are conducted to study the 50% withstand voltage U50 of artificial pollution suspension insulators under different NSDD(non-soluble deposit density)and asymmetric pollution on the top/bottom surface,and study the change of leakage current with air humidity under different voltage and different ESDD(equivalent salt deposit density).The result shows that asymmetric top/bottom surface pollution has a greater impact on the insulator electrical field distribution,and the leakage current will jump under low air humidity,if had large ESDD,which has practical meanings to the anti-pollution design of the transmission line under different pollution levels across the country.
文摘Polyparapheneylene (PPP) was doped by CeCl 4 and FeCl 3, and then electrorheological (ER) suspensions were prepared by polymer powder with high dielectric constants and silicone oil. Under electric field, the change of viscosity, leakage current density and relative physical constants were measured. The relationships among electric field strength, particle concentration, viscosity and leakage current density were discussed. The speed of electrorheological response and the recovery time were studied and corresponding mechanisms were investigated.
文摘This paper compares the different inversion results of three different earth rock-fill dam models with the actual leakage passages by performing isotope tracing tests and resistivity tomographic tests. The accuracy of the experimental results is evaluated, and the characteristics of these two methods are analyzed. As a result, some significant references are offered for earth rock-fill dam’s hidden defects detection. The experimental results show that the leakage and the direction of the seepage can be judged by isotope tracing tests, meanwhile, the degree of the leakage can be confirmed through the determination of the horizontal seepage velocity and the vertical seepage velocity, but it is difficult to properly determine the position of leakage passages and the range of leakage. Relatively speaking, the positions of the leakage passages can be accurately and directly displayed through resistivity tomographic tests. The experiment results show that the resistivity tomographic method is much better than isotope tracing method with regard to earth rock-fill dam’s hidden defects detection, and the resistivity tomographic method expresses much more convenience and much higher precision than isotope tracing method.