The equilibrium model for multicomponent rare earth extraction is developed using neural networks, which combined with the material balance model could give online prediction of component content in countercurrent rar...The equilibrium model for multicomponent rare earth extraction is developed using neural networks, which combined with the material balance model could give online prediction of component content in countercurrent rare earth (extraction) production. Simulation experiments with industrial operation data prove the effectiveness of the hybrid soft-(sensor).展开更多
Throught fusion of the mechanism modeling and the neural networks modeling,a compo- nent content soft-sensor,which is composed of the equilibrium calculation model for multi-component rare earth extraction and the err...Throught fusion of the mechanism modeling and the neural networks modeling,a compo- nent content soft-sensor,which is composed of the equilibrium calculation model for multi-component rare earth extraction and the error compensation model of fuzzy system,is proposed to solve the prob- lem that the component content in countercurrent rare-earth extraction process is hardly measured on-line.An industry experiment in the extraction Y process by HAB using this hybrid soft-sensor proves its effectiveness.展开更多
An observation network focusing on earthquakes wascompleted one year aheadof schedule and put into operationrecently. According to scientists, this135-million-yuan (U.S.$16.3million) project could also be usedfor geod...An observation network focusing on earthquakes wascompleted one year aheadof schedule and put into operationrecently. According to scientists, this135-million-yuan (U.S.$16.3million) project could also be usedfor geodetic surveying, ionosphereand sea-level observations,展开更多
By deploying the ubiquitous and reliable coverage of low Earth orbit(LEO)satellite networks using optical inter satel-lite link(OISL),computation offloading services can be provided for any users without proximal serv...By deploying the ubiquitous and reliable coverage of low Earth orbit(LEO)satellite networks using optical inter satel-lite link(OISL),computation offloading services can be provided for any users without proximal servers,while the resource limita-tion of both computation and storage on satellites is the impor-tant factor affecting the maximum task completion time.In this paper,we study a delay-optimal multi-satellite collaborative computation offloading scheme that allows satellites to actively migrate tasks among themselves by employing the high-speed OISLs,such that tasks with long queuing delay will be served as quickly as possible by utilizing idle computation resources in the neighborhood.To satisfy the delay requirement of delay-sensi-tive task,we first propose a deadline-aware task scheduling scheme in which a priority model is constructed to sort the order of tasks being served based on its deadline,and then a delay-optimal collaborative offloading scheme is derived such that the tasks which cannot be completed locally can be migrated to other idle satellites.Simulation results demonstrate the effective-ness of our multi-satellite collaborative computation offloading strategy in reducing task complement time and improving resource utilization of the LEO satellite network.展开更多
The results of an expert system of lanthanide intermetallic compounds using artificial neural networks and chemical bond parameter method were reported. Two pattern recognition neural models, one for prediction of the...The results of an expert system of lanthanide intermetallic compounds using artificial neural networks and chemical bond parameter method were reported. Two pattern recognition neural models, one for prediction of the occurrence of 1 : 1 lanthanide intermetallic compounds with CsClstructure and the other for prediction of congruent or incongruent melting types, were developed. Four regression neural models were also developed for prediction of melting point of these compounds. In order to get rid of overfitting, cross-vahdation method was used for the neural models. And satisfactory results were obtained in all of the neural models in this paper.展开更多
The artificial neural network (ANN) and the pattern recognition were applied to study the correlation of enthalpies of fusion for divalent rare earth halides with their microstructural parameters,such as ionic radius ...The artificial neural network (ANN) and the pattern recognition were applied to study the correlation of enthalpies of fusion for divalent rare earth halides with their microstructural parameters,such as ionic radius and electronegativity. The model,represented by a back-propagation netal network, was trained with a 12 set of published data for divalent rare earth halides and then was used to predict the unknown ones. Also the criterion equations were ptesented to determine the enthalpies of fuSion for divalent rare earth halides using pattern recognition in mis work. The results from the model in ANN and criterion equations are in very good agreement with reference data.展开更多
Due to the diversified demands of quality of service(QoS) in volume multimedia application, QoS routings for multiservice are becoming a research hotspot in low earth orbit(LEO) satellite networks. A novel QoS sat...Due to the diversified demands of quality of service(QoS) in volume multimedia application, QoS routings for multiservice are becoming a research hotspot in low earth orbit(LEO) satellite networks. A novel QoS satellite routing algorithm for multi-class traffic is proposed. The goal of the routing algorithm is to provide the distinct QoS for different traffic classes and improve the utilization of network resources. Traffic is classified into three classes and allocated priorities based on their QoS requirements, respectively. A priority queuing mechanism guarantees the algorithm to work better for high-priority classes. In order to control the congestion, a blocking probability analysis model is built up based on the Markov process theory. Finally, according to the classification link-cost metrics, routings for different classes are calculated with the distinct QoS requirments and the status of network resource. Simulations verify the performance of the routing algorithm at different time and in different regions, and results demonstrate that the algorithm has great advantages in terms of the average delay and the blocking probability. Meanwhile, the robustness issue is also discussed.展开更多
Integrating Multi-access Edge Computing(MEC) in Low Earth Orbit(LEO) network is an important way to provide globally seamless low-delay service. In this paper, we consider the scenario that MEC platforms with computat...Integrating Multi-access Edge Computing(MEC) in Low Earth Orbit(LEO) network is an important way to provide globally seamless low-delay service. In this paper, we consider the scenario that MEC platforms with computation and storage resource are deployed on LEO satellites, which is called "LEO-MEC". Service request dispatching decision is very important for resource utilization of the whole LEO-MEC system and Qo E of MEC users. Another important problem is service placement that is closely coupled with request dispatching. This paper models the joint service request dispatching and service placement problem as an optimization problem, which is a Mixed Integer Linear Programming(MILP). Our proposed mechanism solves this problem and uses the solved decision variables to dispatch requests and place services. Simulation results show that our proposed mechanism can achieve better performance in terms of ratio of served users and average hop count compared with baseline mechanism.展开更多
Low Earth Orbit (LEO) satellites provide short round-trip delays and are becoming in- creasingly important. One of the challenges in LEO satellite networks is the development of specialized and efficient routing algor...Low Earth Orbit (LEO) satellites provide short round-trip delays and are becoming in- creasingly important. One of the challenges in LEO satellite networks is the development of specialized and efficient routing algorithms. To satisfy the QoS requirements of multimedia applications, satellite routing protocols should consider handovers and minimize their effect on the active connections. A distributed QoS routing scheme based on heuristic ant algorithm is proposed for satisfying delay bound and avoiding link congestion. Simulation results show that the call blocking probabilities of this al- gorithm are less than that of Shortest Path First (SPF) with different delay bound.展开更多
The assay and recovery of rare earth elements (REEs) in the leaching process is being determined using expensive analytical methods: inductively coupled plasma atomic emission spectroscopy (ICP-AES) and inductive...The assay and recovery of rare earth elements (REEs) in the leaching process is being determined using expensive analytical methods: inductively coupled plasma atomic emission spectroscopy (ICP-AES) and inductively coupled plasma mass spectroscopy (ICP-MS). A neural network model to predict the effects of operational variables on the lanthanum, cerium, yttrium, and neodymium recovery in the leaching of apatite concentrate is presented in this article. The effects of leaching time (10 to 40 min), pulp densities (30% to 50%), acid concentrations (20% to 60%), and agitation rates (100 to 200 r/min), were investigated and optimized on the recovery of REEs in the laboratory at a leaching temperature of 60℃. The obtained data in the laboratory optimization process were used for training and testing the neural network. The feed-forward artificial neural network with a 4-5-5-1 arrangement was capable of estimating the leaching recovery of REEs. The neural network predicted values were in good agreement with the experimental results. The correlations of R=l in training stages, and R=0.971, 0.952, 0.985, and 0.98 in testing stages were a result of Ce, Nd, La, and Y recovery prediction respectively, and these values were usually acceptable. It was shown that the proposed neural network model accurately reproduced all the effects of the operation variables, and could be used in the simulation of a leaching plant for REEs.展开更多
This paper addresses the problem of sensor search scheduling in the complicated space environment faced by the low-earth orbit constellation.Several search scheduling methods based on the commonly used information gai...This paper addresses the problem of sensor search scheduling in the complicated space environment faced by the low-earth orbit constellation.Several search scheduling methods based on the commonly used information gain are compared via simulations first.Then a novel search scheduling method in the scenarios of uncertainty observation is proposed based on the global Shannon information gain and beta density based uncertainty model.Simulation results indicate that the beta density model serves a good option for solving the problem of target acquisition in the complicated space environments.展开更多
A series of rare earth (RE) dispersed chromizing coatings were produced on P 110 steel by pack cementation. The orthogonal array design (OAD)was applied to set the experiments. An artificial neural network (ANN)...A series of rare earth (RE) dispersed chromizing coatings were produced on P 110 steel by pack cementation. The orthogonal array design (OAD)was applied to set the experiments. An artificial neural network (ANN) approach is employed to predict the thickness values of the obtained chromizing coatings based on the OAD tests results. The results revealed that the built model was reliable, the thickness values of chromizing coatings were well predicted at selected process parameters, and the predicted error lied in rational range.展开更多
The reversible transfer of unknown quantum states between light and matter is essential for constructing large-scale quantum networks. Over the last decade, various physical systems have been proposed to realize such ...The reversible transfer of unknown quantum states between light and matter is essential for constructing large-scale quantum networks. Over the last decade, various physical systems have been proposed to realize such quantum memory for light. The solid-state quantum memory based on rare-earth-ion-doped solids has the advantages of a reduced setup complexity and high robustness for scalable application. We describe the methods used to spectrally prepare the quantum memory and release the photonic excitation on-demand. We will review the state of the art experiments and discuss the perspective applications of this particular system in both quantum information science and fundamental tests of quantum physics.展开更多
基金ProjectsupportedbytheNationalTenthFive Year PlanofKeyTechnology (2 0 0 2BA3 15A)
文摘The equilibrium model for multicomponent rare earth extraction is developed using neural networks, which combined with the material balance model could give online prediction of component content in countercurrent rare earth (extraction) production. Simulation experiments with industrial operation data prove the effectiveness of the hybrid soft-(sensor).
基金Supported by National Natural Science Foundation of P.R.China(50474020,60534010,60504006)
文摘Throught fusion of the mechanism modeling and the neural networks modeling,a compo- nent content soft-sensor,which is composed of the equilibrium calculation model for multi-component rare earth extraction and the error compensation model of fuzzy system,is proposed to solve the prob- lem that the component content in countercurrent rare-earth extraction process is hardly measured on-line.An industry experiment in the extraction Y process by HAB using this hybrid soft-sensor proves its effectiveness.
文摘An observation network focusing on earthquakes wascompleted one year aheadof schedule and put into operationrecently. According to scientists, this135-million-yuan (U.S.$16.3million) project could also be usedfor geodetic surveying, ionosphereand sea-level observations,
基金This work was supported by the National Key Research and Development Program of China(2021YFB2900600)the National Natural Science Foundation of China(61971041+2 种基金62001027)the Beijing Natural Science Foundation(M22001)the Technological Innovation Program of Beijing Institute of Technology(2022CX01027).
文摘By deploying the ubiquitous and reliable coverage of low Earth orbit(LEO)satellite networks using optical inter satel-lite link(OISL),computation offloading services can be provided for any users without proximal servers,while the resource limita-tion of both computation and storage on satellites is the impor-tant factor affecting the maximum task completion time.In this paper,we study a delay-optimal multi-satellite collaborative computation offloading scheme that allows satellites to actively migrate tasks among themselves by employing the high-speed OISLs,such that tasks with long queuing delay will be served as quickly as possible by utilizing idle computation resources in the neighborhood.To satisfy the delay requirement of delay-sensi-tive task,we first propose a deadline-aware task scheduling scheme in which a priority model is constructed to sort the order of tasks being served based on its deadline,and then a delay-optimal collaborative offloading scheme is derived such that the tasks which cannot be completed locally can be migrated to other idle satellites.Simulation results demonstrate the effective-ness of our multi-satellite collaborative computation offloading strategy in reducing task complement time and improving resource utilization of the LEO satellite network.
文摘The results of an expert system of lanthanide intermetallic compounds using artificial neural networks and chemical bond parameter method were reported. Two pattern recognition neural models, one for prediction of the occurrence of 1 : 1 lanthanide intermetallic compounds with CsClstructure and the other for prediction of congruent or incongruent melting types, were developed. Four regression neural models were also developed for prediction of melting point of these compounds. In order to get rid of overfitting, cross-vahdation method was used for the neural models. And satisfactory results were obtained in all of the neural models in this paper.
文摘The artificial neural network (ANN) and the pattern recognition were applied to study the correlation of enthalpies of fusion for divalent rare earth halides with their microstructural parameters,such as ionic radius and electronegativity. The model,represented by a back-propagation netal network, was trained with a 12 set of published data for divalent rare earth halides and then was used to predict the unknown ones. Also the criterion equations were ptesented to determine the enthalpies of fuSion for divalent rare earth halides using pattern recognition in mis work. The results from the model in ANN and criterion equations are in very good agreement with reference data.
基金Supported by the National High Technology Research and Development Program of China(″863″Program)(2010AAxxx404)~~
文摘Due to the diversified demands of quality of service(QoS) in volume multimedia application, QoS routings for multiservice are becoming a research hotspot in low earth orbit(LEO) satellite networks. A novel QoS satellite routing algorithm for multi-class traffic is proposed. The goal of the routing algorithm is to provide the distinct QoS for different traffic classes and improve the utilization of network resources. Traffic is classified into three classes and allocated priorities based on their QoS requirements, respectively. A priority queuing mechanism guarantees the algorithm to work better for high-priority classes. In order to control the congestion, a blocking probability analysis model is built up based on the Markov process theory. Finally, according to the classification link-cost metrics, routings for different classes are calculated with the distinct QoS requirments and the status of network resource. Simulations verify the performance of the routing algorithm at different time and in different regions, and results demonstrate that the algorithm has great advantages in terms of the average delay and the blocking probability. Meanwhile, the robustness issue is also discussed.
基金funded by the Excellent Postdoctoral Study Project Funding of Hebei Province,grant number B2019005006。
文摘Integrating Multi-access Edge Computing(MEC) in Low Earth Orbit(LEO) network is an important way to provide globally seamless low-delay service. In this paper, we consider the scenario that MEC platforms with computation and storage resource are deployed on LEO satellites, which is called "LEO-MEC". Service request dispatching decision is very important for resource utilization of the whole LEO-MEC system and Qo E of MEC users. Another important problem is service placement that is closely coupled with request dispatching. This paper models the joint service request dispatching and service placement problem as an optimization problem, which is a Mixed Integer Linear Programming(MILP). Our proposed mechanism solves this problem and uses the solved decision variables to dispatch requests and place services. Simulation results show that our proposed mechanism can achieve better performance in terms of ratio of served users and average hop count compared with baseline mechanism.
基金Supported by the National Natural Science Foundation of China (No.60372013).
文摘Low Earth Orbit (LEO) satellites provide short round-trip delays and are becoming in- creasingly important. One of the challenges in LEO satellite networks is the development of specialized and efficient routing algorithms. To satisfy the QoS requirements of multimedia applications, satellite routing protocols should consider handovers and minimize their effect on the active connections. A distributed QoS routing scheme based on heuristic ant algorithm is proposed for satisfying delay bound and avoiding link congestion. Simulation results show that the call blocking probabilities of this al- gorithm are less than that of Shortest Path First (SPF) with different delay bound.
文摘The assay and recovery of rare earth elements (REEs) in the leaching process is being determined using expensive analytical methods: inductively coupled plasma atomic emission spectroscopy (ICP-AES) and inductively coupled plasma mass spectroscopy (ICP-MS). A neural network model to predict the effects of operational variables on the lanthanum, cerium, yttrium, and neodymium recovery in the leaching of apatite concentrate is presented in this article. The effects of leaching time (10 to 40 min), pulp densities (30% to 50%), acid concentrations (20% to 60%), and agitation rates (100 to 200 r/min), were investigated and optimized on the recovery of REEs in the laboratory at a leaching temperature of 60℃. The obtained data in the laboratory optimization process were used for training and testing the neural network. The feed-forward artificial neural network with a 4-5-5-1 arrangement was capable of estimating the leaching recovery of REEs. The neural network predicted values were in good agreement with the experimental results. The correlations of R=l in training stages, and R=0.971, 0.952, 0.985, and 0.98 in testing stages were a result of Ce, Nd, La, and Y recovery prediction respectively, and these values were usually acceptable. It was shown that the proposed neural network model accurately reproduced all the effects of the operation variables, and could be used in the simulation of a leaching plant for REEs.
基金supported by the National Defense Pre-research Foundation (9140A21041110KG0148)
文摘This paper addresses the problem of sensor search scheduling in the complicated space environment faced by the low-earth orbit constellation.Several search scheduling methods based on the commonly used information gain are compared via simulations first.Then a novel search scheduling method in the scenarios of uncertainty observation is proposed based on the global Shannon information gain and beta density based uncertainty model.Simulation results indicate that the beta density model serves a good option for solving the problem of target acquisition in the complicated space environments.
基金Funded by the National Natural Science Foundation of China(No.51171125)the China Postdoctoral Science Foundation (No.2012M520604)+1 种基金the Youth Foundation of Taiyuan University of Technology (No.2012L050)the Foundation for Talents Introduction of Taiyuan University of Technology
文摘A series of rare earth (RE) dispersed chromizing coatings were produced on P 110 steel by pack cementation. The orthogonal array design (OAD)was applied to set the experiments. An artificial neural network (ANN) approach is employed to predict the thickness values of the obtained chromizing coatings based on the OAD tests results. The results revealed that the built model was reliable, the thickness values of chromizing coatings were well predicted at selected process parameters, and the predicted error lied in rational range.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0304100)the National Natural Science Foundation of China(Grant Nos.61327901,11774331,11774335,11504362,11325419,and 11654002)+1 种基金the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDY-SSW-SLH003)the Fundamental Research Funds for the Central Universities,China(Grant Nos.WK2470000023 and WK2470000026)
文摘The reversible transfer of unknown quantum states between light and matter is essential for constructing large-scale quantum networks. Over the last decade, various physical systems have been proposed to realize such quantum memory for light. The solid-state quantum memory based on rare-earth-ion-doped solids has the advantages of a reduced setup complexity and high robustness for scalable application. We describe the methods used to spectrally prepare the quantum memory and release the photonic excitation on-demand. We will review the state of the art experiments and discuss the perspective applications of this particular system in both quantum information science and fundamental tests of quantum physics.