Exact calculations of the static earth pressure from a thick alluvium require accurate/Co values. These calculations influence the sinking cost and the safety of the freezing method. The static earth pressure coeffici...Exact calculations of the static earth pressure from a thick alluvium require accurate/Co values. These calculations influence the sinking cost and the safety of the freezing method. The static earth pressure coefficient (K0) of thick and deep soil was analyzed using laboratory tests. The results show that the static earth pressure coefficient of thick and deep soils is nonlinear and different from that of superficial soils. The constant of superficial soils is usually invariant and the total stress or incremental stress definitions used in traditional geo-meehanics give the same value. The influence of load increments when calculating for superficial soil is ignored. The difference in values of K0 for thick alluvium defimed by the total stress or the incremental stress methods is over 10%. The effects of the thick alluvium on K0 should be considered during the design of frozen shaft projects. Such things as the frozen shaft thickness and the excavated section height should be chosen to assure the rationality of the design and to avoid potential faults and accidents.展开更多
The static earth pressure coefficient of soils is,approximately,considered to be a constant in the view of clas-sical soil mechanics. This is supported by many research results. The high pressure experimental research...The static earth pressure coefficient of soils is,approximately,considered to be a constant in the view of clas-sical soil mechanics. This is supported by many research results. The high pressure experimental research and analysis of remolding deep soil described herein indicate that the static earth pressure of thick overburden has a notable non lin-ear characteristic. It also appears larger than that of superficial soils. It is necessary for deep coal mine design and con-struction to consider this particularity of soil pressure so as to avoid engineering accidents and heavy loss of life and property.展开更多
In order to obtain the earth pressure coefficient at rest (K0) at higher consolidation pressures during secondary compression, a series of K0 tests for saturated reconstituted clay were conducted. The results indicate...In order to obtain the earth pressure coefficient at rest (K0) at higher consolidation pressures during secondary compression, a series of K0 tests for saturated reconstituted clay were conducted. The results indicate that the measured K0 in secondary compression can be described by equations related to internal friction angle, secondary compression coefficient, compression index, recompression index, and sediment time. Effects of consolidation pressures and sediment time on K0 during secondary compression can be attributed to cementation (part of cohesion) increase and internal friction angle decrease. Cementation increase leads to nonlinear variation for K0 and internal friction angle decrease results in increase of K0. K0 computed by equations associated with internal friction angle is overestimated at apparent lower consolidation pressures with different sediment time, which agrees with the measured values well at apparent higher consolidation pressures.展开更多
In this study consecutive consolidated isotropically drained triaxial tests for the coefficient of earth pressure at rest(K_0) were carried out to investigate its rules of evolution as well as its strength characteris...In this study consecutive consolidated isotropically drained triaxial tests for the coefficient of earth pressure at rest(K_0) were carried out to investigate its rules of evolution as well as its strength characteristics for normal,consolidated saturated silt under high pressure.The tests results indicate that:1) for normal,consolidated saturated silt,K_0 values increase as the consolidation stress increases at high pressure levels,while the nonlinear characteristics of K_0 are inconspicuous compared to cohesive soils;2) the Jaky and Roscoe equations,used to calculate K_0,are only suitable for certain soils,but cannot represent these values for normal, consolidated saturated silt due to the variation in bilinear strength at high pressure;and 3) there are close relations between the nonlinear characteristics of K_0 and the void ratio,measured in the tests.Both share the same functional form while under pressure. Based on our experimental results,we developed an empirical linear model to interpret the rules of nonlinear variation for the coefficient of earth pressure at rest.展开更多
A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduce...A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduced to generate the potential failure surface,which is applicable to the case that soil strength parameters have spatial variability.For the purpose of analyzing the effect of earthquake,pseudo-dynamic approach is adopted to introduce the seismic forces,which can take into account the dynamic properties of seismic acceleration.A new type of micro-element is used to calculate the rate of work of external forces and the rate of internal energy dissipation.The analytical expression of seismic active earth pressure coefficient is deduced in the light of upper bound theorem and the corresponding upper bound solutions are obtained through numerical optimization.The method is validated by comparing the results of this paper with those reported in literatures.The parametric analysis is finally presented to further expound the effect of diverse parameters on active earth pressure under non-uniform soil.展开更多
The most common apparatus used to investigate the load-deformation parameters of homogeneous fine-grained soils is a Casagrande-type oedometer. A typical Casagrande oedometer cell has an internal diameter of 76 mm and...The most common apparatus used to investigate the load-deformation parameters of homogeneous fine-grained soils is a Casagrande-type oedometer. A typical Casagrande oedometer cell has an internal diameter of 76 mm and a height of 19 mm.However, the dimensions of this kind of apparatus do not meet the requirements of some civil engineering applications like studying load-deformation characteristics of specimens with large-diameter particles such as granular materials or municipal solid waste materials. Therefore, it is decided to design and develop a large-scale oedometer with an internal diameter of 490 mm. The new apparatus provides the possibility to evaluate the load-deformation characteristics of soil specimens with different diameter to height ratios. The designed apparatus is able to measure the coefficient of lateral earth pressure at rest. The details and capabilities of the developed oedometer are provided and discussed. To study the performance and efficiency, a number of consolidation tests were performed on Firoozkoh No. 161 sand using the newly developed large scale oedometer made and also the 50 mm diameter Casagrande oedometer. Benchmark test results show that measured consolidation parameters by large scale oedometer are comparable to values measured by Casagrande type oedometer.展开更多
The three-hinge precast arch culvert consists of two segmental precast units and three hinge points.It harnesses the passive resistance of an embankment by permitting deflection,resulting in a mechanically stable stru...The three-hinge precast arch culvert consists of two segmental precast units and three hinge points.It harnesses the passive resistance of an embankment by permitting deflection,resulting in a mechanically stable structure.However,the design of the three-hinge precast arch culvert differs from that of a conventional culvert,prompting the mechanical behavior of the culvert to become an important issue.In this study,therefore,1/5 scale model tests were conducted on a three-hinge precast arch culvert to measure the changes in the inside width and earth pressure acting on the culvert at each step in order to investigate the culvert’s mechanical behavior at each construction stage.Moreover,the deflection measurement of the culvert was obtained at the in-situ construction site.The results indicate that the arch members were displaced according to the embankment depth in a similar manner to the design load.Therefore,the horizontal earth pressure,which was larger than the earth pressure at rest,acted on the culvert at the end of its construction.展开更多
Construction of urban tunnels requires the control of surface subsidence to minimize any disturbance to nearby buildings and services. Past study of surface subsidence has been limited to mainly empirical solutions ba...Construction of urban tunnels requires the control of surface subsidence to minimize any disturbance to nearby buildings and services. Past study of surface subsidence has been limited to mainly empirical solutions based on field studies, and very few analytical studies have been carried out. The available analytical solutions are not sufficient to include complex ground conditions; hence, a comprehensive analytical solution coupled with numerical modeling is necessary to model the effect of surface subsidence due to tunneling. This paper presents the results of modeling of surface settlements due to tunneling using the finite element method. The effect of the overconsolidation ratio of soils expressed in terms of the co- efficient of earth pressure at rest (K0) on surface subsidence due to tunneling is investigated. It is demonstrated that surface settlements appear to be sensitive to K0 values, and for geotechnical calculations pertaining to overconsolidated sand and clay soil, K0 values of 0.6 and 0.8, respectively, are proposed.展开更多
基金Project BK2007040 supported by the Provincial Natural Science Foundation of Jiangsu, China
文摘Exact calculations of the static earth pressure from a thick alluvium require accurate/Co values. These calculations influence the sinking cost and the safety of the freezing method. The static earth pressure coefficient (K0) of thick and deep soil was analyzed using laboratory tests. The results show that the static earth pressure coefficient of thick and deep soils is nonlinear and different from that of superficial soils. The constant of superficial soils is usually invariant and the total stress or incremental stress definitions used in traditional geo-meehanics give the same value. The influence of load increments when calculating for superficial soil is ignored. The difference in values of K0 for thick alluvium defimed by the total stress or the incremental stress methods is over 10%. The effects of the thick alluvium on K0 should be considered during the design of frozen shaft projects. Such things as the frozen shaft thickness and the excavated section height should be chosen to assure the rationality of the design and to avoid potential faults and accidents.
基金Project 50534040 supported by the National Natrual Science Foundation of China
文摘The static earth pressure coefficient of soils is,approximately,considered to be a constant in the view of clas-sical soil mechanics. This is supported by many research results. The high pressure experimental research and analysis of remolding deep soil described herein indicate that the static earth pressure of thick overburden has a notable non lin-ear characteristic. It also appears larger than that of superficial soils. It is necessary for deep coal mine design and con-struction to consider this particularity of soil pressure so as to avoid engineering accidents and heavy loss of life and property.
基金Projects(50534040, 50974117) supported by the National Natural Science Foundation of ChinaProject(20110491489) supported by China Postdoctoral Science FoundationProject(2011QNA03) supported by Fundamental Research Funds for Central Universities, China
文摘In order to obtain the earth pressure coefficient at rest (K0) at higher consolidation pressures during secondary compression, a series of K0 tests for saturated reconstituted clay were conducted. The results indicate that the measured K0 in secondary compression can be described by equations related to internal friction angle, secondary compression coefficient, compression index, recompression index, and sediment time. Effects of consolidation pressures and sediment time on K0 during secondary compression can be attributed to cementation (part of cohesion) increase and internal friction angle decrease. Cementation increase leads to nonlinear variation for K0 and internal friction angle decrease results in increase of K0. K0 computed by equations associated with internal friction angle is overestimated at apparent lower consolidation pressures with different sediment time, which agrees with the measured values well at apparent higher consolidation pressures.
基金Financial support for this work,provided by the National Natural Science Foundation of China (No.50534040)the Project of the Science and Technology Ministry of China(No.2006BAB16B01)the Post Graduate Research Project of Jiangsu Province (No.CX08B_103Z),
文摘In this study consecutive consolidated isotropically drained triaxial tests for the coefficient of earth pressure at rest(K_0) were carried out to investigate its rules of evolution as well as its strength characteristics for normal,consolidated saturated silt under high pressure.The tests results indicate that:1) for normal,consolidated saturated silt,K_0 values increase as the consolidation stress increases at high pressure levels,while the nonlinear characteristics of K_0 are inconspicuous compared to cohesive soils;2) the Jaky and Roscoe equations,used to calculate K_0,are only suitable for certain soils,but cannot represent these values for normal, consolidated saturated silt due to the variation in bilinear strength at high pressure;and 3) there are close relations between the nonlinear characteristics of K_0 and the void ratio,measured in the tests.Both share the same functional form while under pressure. Based on our experimental results,we developed an empirical linear model to interpret the rules of nonlinear variation for the coefficient of earth pressure at rest.
基金Projects(51908557,51378510)supported by the National Natural Science Foundation of China。
文摘A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduced to generate the potential failure surface,which is applicable to the case that soil strength parameters have spatial variability.For the purpose of analyzing the effect of earthquake,pseudo-dynamic approach is adopted to introduce the seismic forces,which can take into account the dynamic properties of seismic acceleration.A new type of micro-element is used to calculate the rate of work of external forces and the rate of internal energy dissipation.The analytical expression of seismic active earth pressure coefficient is deduced in the light of upper bound theorem and the corresponding upper bound solutions are obtained through numerical optimization.The method is validated by comparing the results of this paper with those reported in literatures.The parametric analysis is finally presented to further expound the effect of diverse parameters on active earth pressure under non-uniform soil.
基金financial support provided by the Iran University of Science and Technology
文摘The most common apparatus used to investigate the load-deformation parameters of homogeneous fine-grained soils is a Casagrande-type oedometer. A typical Casagrande oedometer cell has an internal diameter of 76 mm and a height of 19 mm.However, the dimensions of this kind of apparatus do not meet the requirements of some civil engineering applications like studying load-deformation characteristics of specimens with large-diameter particles such as granular materials or municipal solid waste materials. Therefore, it is decided to design and develop a large-scale oedometer with an internal diameter of 490 mm. The new apparatus provides the possibility to evaluate the load-deformation characteristics of soil specimens with different diameter to height ratios. The designed apparatus is able to measure the coefficient of lateral earth pressure at rest. The details and capabilities of the developed oedometer are provided and discussed. To study the performance and efficiency, a number of consolidation tests were performed on Firoozkoh No. 161 sand using the newly developed large scale oedometer made and also the 50 mm diameter Casagrande oedometer. Benchmark test results show that measured consolidation parameters by large scale oedometer are comparable to values measured by Casagrande type oedometer.
基金supported by the National Institute for Land and Infrastructure Management,MLIT,Japan(grant for the research and development of technologies for improving the quality of road policies,no.24-4,2012-2015).
文摘The three-hinge precast arch culvert consists of two segmental precast units and three hinge points.It harnesses the passive resistance of an embankment by permitting deflection,resulting in a mechanically stable structure.However,the design of the three-hinge precast arch culvert differs from that of a conventional culvert,prompting the mechanical behavior of the culvert to become an important issue.In this study,therefore,1/5 scale model tests were conducted on a three-hinge precast arch culvert to measure the changes in the inside width and earth pressure acting on the culvert at each step in order to investigate the culvert’s mechanical behavior at each construction stage.Moreover,the deflection measurement of the culvert was obtained at the in-situ construction site.The results indicate that the arch members were displaced according to the embankment depth in a similar manner to the design load.Therefore,the horizontal earth pressure,which was larger than the earth pressure at rest,acted on the culvert at the end of its construction.
文摘Construction of urban tunnels requires the control of surface subsidence to minimize any disturbance to nearby buildings and services. Past study of surface subsidence has been limited to mainly empirical solutions based on field studies, and very few analytical studies have been carried out. The available analytical solutions are not sufficient to include complex ground conditions; hence, a comprehensive analytical solution coupled with numerical modeling is necessary to model the effect of surface subsidence due to tunneling. This paper presents the results of modeling of surface settlements due to tunneling using the finite element method. The effect of the overconsolidation ratio of soils expressed in terms of the co- efficient of earth pressure at rest (K0) on surface subsidence due to tunneling is investigated. It is demonstrated that surface settlements appear to be sensitive to K0 values, and for geotechnical calculations pertaining to overconsolidated sand and clay soil, K0 values of 0.6 and 0.8, respectively, are proposed.