Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hi...Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hibernation techniques,mild hypothermia has preliminarily confirmed its clinical effect on spinal cord injury.However,its technical defects and barriers,along with serious clinical side effects,restrict its clinical application for spinal cord injury.Artificial hibernation is a futureoriented disruptive technology for human life support.It involves endogenous hibernation inducers and hibernation-related central neuromodulation that activate particular neurons,reduce the central constant temperature setting point,disrupt the normal constant body temperature,make the body adapt"to the external cold environment,and reduce the physiological resistance to cold stimulation.Thus,studying the artificial hibernation mechanism may help develop new treatment strategies more suitable for clinical use than the cooling method of mild hypothermia technology.This review introduces artificial hibernation technologies,including mild hypothermia technology,hibernation inducers,and hibernation-related central neuromodulation technology.It summarizes the relevant research on hypothermia and hibernation for organ and nerve protection.These studies show that artificial hibernation technologies have therapeutic significance on nerve injury after spinal co rd injury through inflammatory inhibition,immunosuppression,oxidative defense,and possible central protection.It also promotes the repair and protection of res pirato ry and digestive,cardiovascular,locomoto r,urinary,and endocrine systems.This review provides new insights for the clinical treatment of nerve and multiple organ protection after spinal cord injury thanks to artificial hibernation.At present,artificial hibernation technology is not mature,and research fa ces various challenges.Neve rtheless,the effort is wo rthwhile for the future development of medicine.展开更多
Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,wit...Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,with their distinct physical and chemical properties,has greatly contributed to enhancing the mechanical performance,degradation behavior,and biological performance of biomedical Mg alloys.Currently,a series of RE-Mg alloys are being designed and investigated for orthopedic implants and cardiovascular stents,achieving substantial and encouraging research progress.In this work,a comprehensive summary of the state-of-the-art in biomedical RE-Mg alloys is provided.The physiological effects and design standards of RE elements in biomedical Mg alloys are discussed.Particularly,the degradation behavior and mechanical properties,including their underlying action are studied in-depth.Furthermore,the preparation techniques and current application status of RE-Mg alloys are reviewed.Finally,we address the ongoing challenges and propose future prospects to guide the development of high-performance biomedical Mg-RE alloys.展开更多
In this paper,an efficient unequal error protection(UEP)scheme for online fountain codes is proposed.In the buildup phase,the traversing-selection strategy is proposed to select the most important symbols(MIS).Then,in...In this paper,an efficient unequal error protection(UEP)scheme for online fountain codes is proposed.In the buildup phase,the traversing-selection strategy is proposed to select the most important symbols(MIS).Then,in the completion phase,the weighted-selection strategy is applied to provide low overhead.The performance of the proposed scheme is analyzed and compared with the existing UEP online fountain scheme.Simulation results show that in terms of MIS and the least important symbols(LIS),when the bit error ratio is 10-4,the proposed scheme can achieve 85%and 31.58%overhead reduction,respectively.展开更多
Post-disaster reconstruction is a topic of global concern,and traditional villages have special heritage attributes and need to face more requirements and obstacles in post-disaster reconstruction.This paper summarize...Post-disaster reconstruction is a topic of global concern,and traditional villages have special heritage attributes and need to face more requirements and obstacles in post-disaster reconstruction.This paper summarizes four concepts based on the research on post-disaster reconstruction both domestically and internationally,as well as the recovery and reconstruction of cultural heritage.Through a field survey of traditional villages in the Ms 6.8 Luding earthquake-stricken area,it is found that there are problems such as insufficient awareness of heritage value,misalignment of scientific reconstruction technology,and insufficient protection of reconstruction elements during the reconstruction process.Traditional villages face the risk of declining or even loss of heritage value.In order to effectively protect traditional villages and inherit the carrier of regional culture,four targeted reconstruction response strategies are proposed,i.e.,to"establish special planning for traditional village preservation","emphasize recovery of the authenticity of village heritage","ensure elements for village heritage recovery"and"promote the activation and utilization of village heritage",based on the problems discovered during the survey and the four concepts summarized in the research on post-disaster reconstruction of traditional villages.The research results hope to provide useful reference for ancient cultural areas affected by earthquakes on how to protect cultural heritage during the post-disaster reconstruction process.展开更多
Objective:To reveal the molecular mechanism underlying the compatibility of Salvia miltiorrhiza Bge(S.miltiorrhiza,Dan Shen)and C.tinctorius L.(C.tinctorius,Hong Hua)as an herb pair through network pharmacology and su...Objective:To reveal the molecular mechanism underlying the compatibility of Salvia miltiorrhiza Bge(S.miltiorrhiza,Dan Shen)and C.tinctorius L.(C.tinctorius,Hong Hua)as an herb pair through network pharmacology and subsequent experimental validation.Methods:Network pharmacology was applied to construct an active ingredient-efficacy target-disease protein network to reveal the unique regulation pattern of s.miltiorrhiza and C.tinctorius as herb pair.Molecular docking was used to verify the binding of the components of these herbs and their potential targets.An H9c2 glucose hypoxia model was used to evaluate the efficacy of the components and their synergistic effects,which were evaluated using the combination index.Western blot was performed to detect the protein expression of these targets.Results:Network pharmacology analysis revealed 5 pathways and 8 core targets of s.miltiorrhiza and C.tinctorius in myocardial protection.Five of the core targets were enriched in the hypoxia-inducible factor-1(HIF-1)signaling pathway.S.miltiorrhiza-C.tinctorius achieved vascular tone mainly by regulating the target genes of the HIF-1 pathway.As an upstream gene of the HIF-1 pathway,STAT3 can be activated by the active ingredients cryptotanshinone(Ctan),salvianolic acid B(Sal.B),and myricetin(Myric).Cell experiments revealed that Myric,Sal.B,and Ctan also exhibited synergistic myocardial protective activity.Molecular docking verified the strong binding of Myric,Sal.B,and Ctan to STAT3.Western blot further showed that the active ingredients synergistically upregulated the protein expressionof STAT3.Conclusion:The pharmacodynamic transmission analysis revealed that the active ingredients of S.miltiorrhiza and C.tinctorius can synergistically resist ischemia through various targets and pathways.This study provides a methodological reference for interpreting traditional Chinese medicine compatibility.展开更多
Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,t...Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,the failure mode and the earth pressure acting on the rigid retaining wall with EPS geofoam inclusions and granular backfills(henceforth referred to as EPS-wall),under limited surcharge loading are investigated through two-and three-dimensional model tests.The testing results show that different from the sliding of almost all the backfill in the EPS-wall under semi-infinite surcharge loading,only an approximately triangular backfill slides in the wall under limited surcharge loading.The distribution of the lateral earth pressure on the EPS-wall under limited surcharge loading is non-linear,and the distribution changes from the increase of the wall depth to the decrease with the increase of the limited surcharge loading.An approach based on the force equilibrium of a differential element is developed to predict the lateral earth pressure behind the EPS-wall subjected to limited surcharge loading,and its performance was fully validated by the three-dimensional model tests.展开更多
A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented i...A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented in this study.CAP can serve as a guiding principle to assist designers in comprehending the distinct roles fulfilled by each component.The CAP proposal comprises four functional layers,organized in a suggested hierarchy of materials.Particularly notable is the inclusion of a ceramic-composite principle,representing an advanced and innovative solution in the field of armor design.This paper showcases real-world defense industry applications,offering case studies that demonstrate the effectiveness of this advanced approach.CAP represents a significant milestone in the history of passive protection,marking an evolutionary leap in the field.This philosophical approach provides designers with a powerful toolset with which to enhance the protection capabilities of military vehicles,making them more resilient and better equipped to meet the challenges of modern warfare.展开更多
Safety issue is still a problem nowadays for the large-scale application of lithium-ion batteries(LIBs)in electric vehicles and energy storage stations.The unsafe behaviors of LIBs arise from the thermal run-away,whic...Safety issue is still a problem nowadays for the large-scale application of lithium-ion batteries(LIBs)in electric vehicles and energy storage stations.The unsafe behaviors of LIBs arise from the thermal run-away,which is intrinsically triggered by the overcharging and overheating.To improve the safety of LIBs,various protection strategies based on self-actuating reaction control mechanisms(SRCMs)have been proposed,including redox shuttle,polymerizable monomer additive,potential-sensitive separator,thermal shutdown separator,positive-temperature-coefficient electrode,thermally polymerizable addi-tive,and reversible thermal phase transition electrolyte.As build-in protection mechanisms,these meth-ods can sensitively detect either the temperature change inside battery or the potential change of the electrode,and spontaneously shut down the electrode reaction at risky conditions,thus preventing the battery from going into thermal runaway.Given their advantages in enhancing the intrinsic safety of LIBs,this paper overviews the research progresses of SRCMs after a brief introduction of thermal runaway mechanism and limitations of conventional thermal runaway mitigating measures.More importantly,the current states and issues,key challenges,and future developing trends of SRCTs are also discussed and outlined from the viewpoint of practical application,aiming at providing insights and guidance for developing more effective SRCMs for LIBs.展开更多
Parkinson’s disease:Parkinson’s disease(PD) is the second most prevalent neurodegenerative disease,after Alzheimer’s disease,affecting 1%of the general population over the age of 65years.According to data from the ...Parkinson’s disease:Parkinson’s disease(PD) is the second most prevalent neurodegenerative disease,after Alzheimer’s disease,affecting 1%of the general population over the age of 65years.According to data from the World Health Organization(WHO),its prevalence has doubled in the past 25 years.In 2019,global estimates indicated over 8.5 million individuals with PD and it is suggested that PD caused 329000 deaths,an increase of over 100% since 2000(WHO,2022).展开更多
Ambroxol hydrochloride(2-amino-3,5-dibromo-N-methylbenzylamine hydrochloride)has been used as a mucolytic agent in the treatment of respiratory diseases since the late 1970s.Its effects on mucus membranes such as mucu...Ambroxol hydrochloride(2-amino-3,5-dibromo-N-methylbenzylamine hydrochloride)has been used as a mucolytic agent in the treatment of respiratory diseases since the late 1970s.Its effects on mucus membranes such as mucus disruption,increased mucus production,and low toxicity profile were addressed in its original German patent in 1966.These first described properties have kept Ambroxol available worldwide and over the counter in the pharmaceutical market to this day.展开更多
Original statement in the caption of Fig.5:Fig.5.JinMaiTong(JMT)treatment restored the perturbed central carbohydrate metabolism in the circulation and sciatic nerve of diabetic peripheral neuropathy(DPN)rats.Dash lin...Original statement in the caption of Fig.5:Fig.5.JinMaiTong(JMT)treatment restored the perturbed central carbohydrate metabolism in the circulation and sciatic nerve of diabetic peripheral neuropathy(DPN)rats.Dash line arrows indicate the direct metabolic reactions,and solid line arrows indicate the indirect reactions.*P<0.05 and**P<0.01.ns:no significant difference.CON:control;TCA:tricarboxylic acid cycle;ADP:adenosine diphosphate:ATP:adenosine triphosphate;GDP:guanosine diphosphate;GTP:guanosine triphosphate.展开更多
Neurons are notoriously vulnerable cell types.Even the slightest change in their internal and/or external environments will cause much distress and dysfunction,leading often to their death.A range of pathological cond...Neurons are notoriously vulnerable cell types.Even the slightest change in their internal and/or external environments will cause much distress and dysfunction,leading often to their death.A range of pathological conditions,including stroke,head trauma,and neurodegenerative disease,can generate stress in neurons,affecting their survival and proper function.In most neural pathologies,mitochondria become dysfunctional and this plays a pivotal role in the process of cell death.The challenge over the last few decades has been to develop effective interventions that improve neuronal homeostasis under pathological conditions.Such interventions,often referred to as disease-modifying or neuroprotective,have,however,proved frustratingly elusive,at both preclinical and,in particular,clinical levels.In this perspective,we highlight two factors that we feel are key to the development of effective neuroprotective treatments.These are:firstly,the choice of dose of intervention and method of application,and secondly,the selection of subjects,whether they be patients or the animal model.展开更多
基金supported by the Key Projects of the National Natural Science Foundation of China,No.11932013(to XC)Key Military Logistics Research Projects,No.B WJ21J002(to XC)+4 种基金the Key projects of the Special Zone for National Defence Innovation,No.21-163-12-ZT006002-13(to XC)the National Nature Science Foundation of China No.82272255(to XC)the National Defense Science and Technology Outstanding Youth Science Fund Program,No.2021-JCIQ-ZQ-035(to XC)the Scientific Research Innovation Team Project of Armed Police Characteristic Medical Center,No.KYCXTD0104(to ZL)the National Natural Science Foundation of China Youth Fund,No.82004467(to BC)。
文摘Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hibernation techniques,mild hypothermia has preliminarily confirmed its clinical effect on spinal cord injury.However,its technical defects and barriers,along with serious clinical side effects,restrict its clinical application for spinal cord injury.Artificial hibernation is a futureoriented disruptive technology for human life support.It involves endogenous hibernation inducers and hibernation-related central neuromodulation that activate particular neurons,reduce the central constant temperature setting point,disrupt the normal constant body temperature,make the body adapt"to the external cold environment,and reduce the physiological resistance to cold stimulation.Thus,studying the artificial hibernation mechanism may help develop new treatment strategies more suitable for clinical use than the cooling method of mild hypothermia technology.This review introduces artificial hibernation technologies,including mild hypothermia technology,hibernation inducers,and hibernation-related central neuromodulation technology.It summarizes the relevant research on hypothermia and hibernation for organ and nerve protection.These studies show that artificial hibernation technologies have therapeutic significance on nerve injury after spinal co rd injury through inflammatory inhibition,immunosuppression,oxidative defense,and possible central protection.It also promotes the repair and protection of res pirato ry and digestive,cardiovascular,locomoto r,urinary,and endocrine systems.This review provides new insights for the clinical treatment of nerve and multiple organ protection after spinal cord injury thanks to artificial hibernation.At present,artificial hibernation technology is not mature,and research fa ces various challenges.Neve rtheless,the effort is wo rthwhile for the future development of medicine.
基金supported by National Key Research and Development Program of China[2023YFB4605800]National Natural Science Foundation of China[51935014,52165043]+3 种基金JiangXi Provincial Natural Science Foundation of China[20224ACB204013,20224ACB214008]Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects[20225BCJ23008]Anhui Provincial Natural Science Foundation[2308085ME171]The University Synergy Innovation Program of Anhui Province[GXXT-2023-025,GXXT-2023-026].
文摘Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,with their distinct physical and chemical properties,has greatly contributed to enhancing the mechanical performance,degradation behavior,and biological performance of biomedical Mg alloys.Currently,a series of RE-Mg alloys are being designed and investigated for orthopedic implants and cardiovascular stents,achieving substantial and encouraging research progress.In this work,a comprehensive summary of the state-of-the-art in biomedical RE-Mg alloys is provided.The physiological effects and design standards of RE elements in biomedical Mg alloys are discussed.Particularly,the degradation behavior and mechanical properties,including their underlying action are studied in-depth.Furthermore,the preparation techniques and current application status of RE-Mg alloys are reviewed.Finally,we address the ongoing challenges and propose future prospects to guide the development of high-performance biomedical Mg-RE alloys.
基金supported by the National Natural Science Foundation of China(61601147)the Beijing Natural Science Foundation(L182032)。
文摘In this paper,an efficient unequal error protection(UEP)scheme for online fountain codes is proposed.In the buildup phase,the traversing-selection strategy is proposed to select the most important symbols(MIS).Then,in the completion phase,the weighted-selection strategy is applied to provide low overhead.The performance of the proposed scheme is analyzed and compared with the existing UEP online fountain scheme.Simulation results show that in terms of MIS and the least important symbols(LIS),when the bit error ratio is 10-4,the proposed scheme can achieve 85%and 31.58%overhead reduction,respectively.
基金funded by the National Natural Science Foundation of China under the project“Research on Urban Spatial Coupling Mechanism Between Urban Epidemic Spreading and Vulnerability and Planning Response in Chengdu-Chongqing Area”(Grant No.52078423)the Major Program of Sichuan Provincial Scientific Research under the Project“Research and Demonstration of Resilient Collaborative Planning and Design for Park Cities”(Grant No.2020YFS0054)the Sichuan Provincial Science and Technology Innovation Platform and Talent Plan"Research on the Construction and Development Strategies of Several Major Infrastructure Systems for New Smart Cities"(Grant No.2022JDR0356).
文摘Post-disaster reconstruction is a topic of global concern,and traditional villages have special heritage attributes and need to face more requirements and obstacles in post-disaster reconstruction.This paper summarizes four concepts based on the research on post-disaster reconstruction both domestically and internationally,as well as the recovery and reconstruction of cultural heritage.Through a field survey of traditional villages in the Ms 6.8 Luding earthquake-stricken area,it is found that there are problems such as insufficient awareness of heritage value,misalignment of scientific reconstruction technology,and insufficient protection of reconstruction elements during the reconstruction process.Traditional villages face the risk of declining or even loss of heritage value.In order to effectively protect traditional villages and inherit the carrier of regional culture,four targeted reconstruction response strategies are proposed,i.e.,to"establish special planning for traditional village preservation","emphasize recovery of the authenticity of village heritage","ensure elements for village heritage recovery"and"promote the activation and utilization of village heritage",based on the problems discovered during the survey and the four concepts summarized in the research on post-disaster reconstruction of traditional villages.The research results hope to provide useful reference for ancient cultural areas affected by earthquakes on how to protect cultural heritage during the post-disaster reconstruction process.
基金supported by the National Natural Science Foundation of China(81703947)the Fundamental Research Funds for the Central Universities(2019-JYB-XJSJJ-011).
文摘Objective:To reveal the molecular mechanism underlying the compatibility of Salvia miltiorrhiza Bge(S.miltiorrhiza,Dan Shen)and C.tinctorius L.(C.tinctorius,Hong Hua)as an herb pair through network pharmacology and subsequent experimental validation.Methods:Network pharmacology was applied to construct an active ingredient-efficacy target-disease protein network to reveal the unique regulation pattern of s.miltiorrhiza and C.tinctorius as herb pair.Molecular docking was used to verify the binding of the components of these herbs and their potential targets.An H9c2 glucose hypoxia model was used to evaluate the efficacy of the components and their synergistic effects,which were evaluated using the combination index.Western blot was performed to detect the protein expression of these targets.Results:Network pharmacology analysis revealed 5 pathways and 8 core targets of s.miltiorrhiza and C.tinctorius in myocardial protection.Five of the core targets were enriched in the hypoxia-inducible factor-1(HIF-1)signaling pathway.S.miltiorrhiza-C.tinctorius achieved vascular tone mainly by regulating the target genes of the HIF-1 pathway.As an upstream gene of the HIF-1 pathway,STAT3 can be activated by the active ingredients cryptotanshinone(Ctan),salvianolic acid B(Sal.B),and myricetin(Myric).Cell experiments revealed that Myric,Sal.B,and Ctan also exhibited synergistic myocardial protective activity.Molecular docking verified the strong binding of Myric,Sal.B,and Ctan to STAT3.Western blot further showed that the active ingredients synergistically upregulated the protein expressionof STAT3.Conclusion:The pharmacodynamic transmission analysis revealed that the active ingredients of S.miltiorrhiza and C.tinctorius can synergistically resist ischemia through various targets and pathways.This study provides a methodological reference for interpreting traditional Chinese medicine compatibility.
基金funding support from National Natural Science Foundation of China(Grant No.52179109)Jiangsu Provincial Natural Science Foundation(Grant No.BK20230967)Open Research Fund of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University(Grant No.KF2022-02).
文摘Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,the failure mode and the earth pressure acting on the rigid retaining wall with EPS geofoam inclusions and granular backfills(henceforth referred to as EPS-wall),under limited surcharge loading are investigated through two-and three-dimensional model tests.The testing results show that different from the sliding of almost all the backfill in the EPS-wall under semi-infinite surcharge loading,only an approximately triangular backfill slides in the wall under limited surcharge loading.The distribution of the lateral earth pressure on the EPS-wall under limited surcharge loading is non-linear,and the distribution changes from the increase of the wall depth to the decrease with the increase of the limited surcharge loading.An approach based on the force equilibrium of a differential element is developed to predict the lateral earth pressure behind the EPS-wall subjected to limited surcharge loading,and its performance was fully validated by the three-dimensional model tests.
基金co-financed by the European Regional Development Fund of the European UnionGreek national funds through the Operational Program Competitiveness,Entrepreneurship and Innovation,under the call RESEARCH-CREATE-INNOVATE(project code:T1EDK-04429)。
文摘A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented in this study.CAP can serve as a guiding principle to assist designers in comprehending the distinct roles fulfilled by each component.The CAP proposal comprises four functional layers,organized in a suggested hierarchy of materials.Particularly notable is the inclusion of a ceramic-composite principle,representing an advanced and innovative solution in the field of armor design.This paper showcases real-world defense industry applications,offering case studies that demonstrate the effectiveness of this advanced approach.CAP represents a significant milestone in the history of passive protection,marking an evolutionary leap in the field.This philosophical approach provides designers with a powerful toolset with which to enhance the protection capabilities of military vehicles,making them more resilient and better equipped to meet the challenges of modern warfare.
基金financially supported by the National Natural Science Foundation of China(U22A20438)the National Key R&D Program of China(2022YFB2502100)the National Natural Science Foundation of China(22309138).
文摘Safety issue is still a problem nowadays for the large-scale application of lithium-ion batteries(LIBs)in electric vehicles and energy storage stations.The unsafe behaviors of LIBs arise from the thermal run-away,which is intrinsically triggered by the overcharging and overheating.To improve the safety of LIBs,various protection strategies based on self-actuating reaction control mechanisms(SRCMs)have been proposed,including redox shuttle,polymerizable monomer additive,potential-sensitive separator,thermal shutdown separator,positive-temperature-coefficient electrode,thermally polymerizable addi-tive,and reversible thermal phase transition electrolyte.As build-in protection mechanisms,these meth-ods can sensitively detect either the temperature change inside battery or the potential change of the electrode,and spontaneously shut down the electrode reaction at risky conditions,thus preventing the battery from going into thermal runaway.Given their advantages in enhancing the intrinsic safety of LIBs,this paper overviews the research progresses of SRCMs after a brief introduction of thermal runaway mechanism and limitations of conventional thermal runaway mitigating measures.More importantly,the current states and issues,key challenges,and future developing trends of SRCTs are also discussed and outlined from the viewpoint of practical application,aiming at providing insights and guidance for developing more effective SRCMs for LIBs.
基金Authors are also grateful to RHO’s postdoctoral contract (Ayuda IJC2020-045695-I financed by MCIN/AEI/10.13039/501100011033,European Union NextGeneration EU/PRTR)。
文摘Parkinson’s disease:Parkinson’s disease(PD) is the second most prevalent neurodegenerative disease,after Alzheimer’s disease,affecting 1%of the general population over the age of 65years.According to data from the World Health Organization(WHO),its prevalence has doubled in the past 25 years.In 2019,global estimates indicated over 8.5 million individuals with PD and it is suggested that PD caused 329000 deaths,an increase of over 100% since 2000(WHO,2022).
基金partly funded by the Clinician-Scientist grant(No.472-0-0)by the medical faculty of the University of Tübingen(to SCV).
文摘Ambroxol hydrochloride(2-amino-3,5-dibromo-N-methylbenzylamine hydrochloride)has been used as a mucolytic agent in the treatment of respiratory diseases since the late 1970s.Its effects on mucus membranes such as mucus disruption,increased mucus production,and low toxicity profile were addressed in its original German patent in 1966.These first described properties have kept Ambroxol available worldwide and over the counter in the pharmaceutical market to this day.
文摘Original statement in the caption of Fig.5:Fig.5.JinMaiTong(JMT)treatment restored the perturbed central carbohydrate metabolism in the circulation and sciatic nerve of diabetic peripheral neuropathy(DPN)rats.Dash line arrows indicate the direct metabolic reactions,and solid line arrows indicate the indirect reactions.*P<0.05 and**P<0.01.ns:no significant difference.CON:control;TCA:tricarboxylic acid cycle;ADP:adenosine diphosphate:ATP:adenosine triphosphate;GDP:guanosine diphosphate;GTP:guanosine triphosphate.
基金supported by Fonds Clinatec and COVEA France(to JM).
文摘Neurons are notoriously vulnerable cell types.Even the slightest change in their internal and/or external environments will cause much distress and dysfunction,leading often to their death.A range of pathological conditions,including stroke,head trauma,and neurodegenerative disease,can generate stress in neurons,affecting their survival and proper function.In most neural pathologies,mitochondria become dysfunctional and this plays a pivotal role in the process of cell death.The challenge over the last few decades has been to develop effective interventions that improve neuronal homeostasis under pathological conditions.Such interventions,often referred to as disease-modifying or neuroprotective,have,however,proved frustratingly elusive,at both preclinical and,in particular,clinical levels.In this perspective,we highlight two factors that we feel are key to the development of effective neuroprotective treatments.These are:firstly,the choice of dose of intervention and method of application,and secondly,the selection of subjects,whether they be patients or the animal model.