The earth-rockfill dam is one of the primary dam types in the selection of high dams to be constructed in Western China, since it is characterized by favorable adaptability of the dam foundation; full utilization of l...The earth-rockfill dam is one of the primary dam types in the selection of high dams to be constructed in Western China, since it is characterized by favorable adaptability of the dam foundation; full utilization of local earth, rock, and building-excavated materials; low construction cost; and low cement consumption. Many major technical issues regarding earth-rockfill dams with a height of over 250 m were studied and solved successfully in the construction of the 261.5 m Nuozhadu earth core rockfill dam. This paper describes research achievements and basic conclusions; systematically summarizes the accumulated experiences from the construction of the Nuozhadu Dam and other high earth-rockfill dams; and discusses major technical issues, such as deformation control, seepage control, dam slope stability, safety and control of flood discharging, safety and quality control of dam construction, safety assessments, early warning, and other key technical difficulties. This study also provides a reference and technological support for the future construction of 300 m high earth-rockfill dams.展开更多
In the present study a Genetic Programing model (GP) proposed for the prediction of relative crest settlement of concrete faced rock fill dams. To this end information of 30 large dams constructed in seven countries a...In the present study a Genetic Programing model (GP) proposed for the prediction of relative crest settlement of concrete faced rock fill dams. To this end information of 30 large dams constructed in seven countries across the world is gathered with their reported settlements. The results showed that the GP model is able to estimate the dam settlement properly based on four properties, void ratio of dam’s body (e), height (H), vertical deformation modulus (Ev) and shape factor (Sc) of the dam. For verification of the model applicability, obtained results compared with other research methods such as Clements’s formula and the finite element model. The comparison showed that in all cases the GP model led to be more accurate than those of performed in literature. Also a proper compatibility between the GP model and the finite element model was perceived.展开更多
Careful monitoring in the earth dams, to measure deformation caused by settlement and movement has always been a concern for engineers in the field. In order to measure settlement and deformation of earth dams, usuall...Careful monitoring in the earth dams, to measure deformation caused by settlement and movement has always been a concern for engineers in the field. In order to measure settlement and deformation of earth dams, usually the precision instruments of settlement set and combined Inclinometer that is commonly referred to IS instrument, will be used. In some dams, because the thickness of alluvium is high and there is no possibility of alluvium removal (technically and economically and in terms of performance), there is no possibility to place the end of IS instrument (precision instruments of Inclinometer-settlement set) in the rock foundation. Inevitably, have to accept installing pipes in the weak and the deformable alluvial foundation that this leads to errors in the calculation of the actual settlement (absolute settlement) in different parts of the dam body. The purpose of this paper is to present new and refine criteria for predicting settlement and deformation in earth dams. The study is based on conditions in three dams with a deformation quite alluvial (Agh Chai, Narmashir and Gilan-e Gharb) to provide settlement criteria affected by alluvial foundation. To achieve this goal, the settlement of dams was simulated by using finite difference method with FLAC3D software and then the modeling results were compared with reading IS instrument. In the end, the caliber of the model and validate the results, by using regression analysis techniques and scrutinized modeling parameters with real situations and then by using MATLAB software and Curve Fitting Toolbox, a new criteria for the settlement based on elasticity modulus, cohesion, friction angle, density of earth dam and alluvial foundation was obtained. The results of these studies show that, by using the new criteria measures, the amount of settlement and deformation for the dams with alluvial foundation can be corrected after instrument readings and the error rate in reading IS instrument can be greatly reduced.展开更多
Many high earth-rockfill dams are constructed in the west of China. The seismic intensity at the dam site is usually very high, thus it is of great importance to ensure the safety of the dam in meizoseismal area. A 3D...Many high earth-rockfill dams are constructed in the west of China. The seismic intensity at the dam site is usually very high, thus it is of great importance to ensure the safety of the dam in meizoseismal area. A 3D FEM model is established to analyze the seismic responses of Shiziping earth-rockfill dam. The nonlinear elastic Duncan-Chang constitutive model and the equivalent viscoelastic constitutive model are used to simulate the static and dynamic stress strain relationships of the dam materials, respectively. Four groups of seismic waves are inputted from the top of the bedrock to analyze the dynamic responses of the dam. The numerical results show that the calculated dynamic magnification factors display a good consistency with the specification values. The site spectrum results in larger acceleration response than the specification spectrum. The analysis of relative dynamic displacement indicates that the displacement at the downstream side of the dam is larger than that at the upstream side. The displacement response reduces from the center of river valley to two banks. The displacement responses corresponding to the specification spectrum are a little smaller than those corresponding to the site spectrum. The analysis of shear stress indicates that a large shear stress area appears in the upstream overburden layer, where the shear stress caused by site waves is larger than that caused by specification waves. The analysis of dynamic principal stress indicates that the minimum dynamic stresses in corridor caused by specification and site waves have little difference. The maximum and minimum dynamic stresses are relatively large at two sides. The largest tensile stress occurs at two sides of the floor of grouting corridor, which may result in the crack near the corridor side. The numerical results present good consistency with the observation data of the grouting corridor in Wenchuan earthquake.展开更多
The unique structure and complex deformation characteristics of concrete face rockfill dams(CFRDs)create safety monitoring challenges.This study developed an improved random forest(IRF)model for dam health monitoring ...The unique structure and complex deformation characteristics of concrete face rockfill dams(CFRDs)create safety monitoring challenges.This study developed an improved random forest(IRF)model for dam health monitoring modeling by replacing the decision tree in the random forest(RF)model with a novel M5'model tree algorithm.The factors affecting dam deformation were preliminarily selected using the statistical model,and the grey relational degree theory was utilized to reduce the dimensions of model input variables.Finally,a deformation prediction model of CFRDs was established using the IRF model.The ten-fold cross-validation method was used to quantitatively analyze the parameters affecting the IRF algorithm.The performance of the established model was verified using data from three specific measurement points on the Jishixia dam and compared with other dam deformation prediction models.At point ES-10,the performance evaluation indices of the IRF model were superior to those of the M5'model tree and RF models and the classical support vector regression(SVR)and back propagation(BP)neural network models,indicating the satisfactory performance of the IRF model.The IRF model also outperformed the SVR and BP models in settlement prediction at points ES2-8 and ES4-10,demonstrating its strong anti-interference and generalization capabilities.This study has developed a novel method for forecasting and analyzing dam settlements with practical significance.Moreover,the established IRF model can also provide guidance for modeling health monitoring of other structures.展开更多
In this study,the behavior of Gavoshan dam was evaluated during construction and the first impounding.A two-dimensional(2D) numerical analysis was conducted based on a finite difference method on the largest cross-s...In this study,the behavior of Gavoshan dam was evaluated during construction and the first impounding.A two-dimensional(2D) numerical analysis was conducted based on a finite difference method on the largest cross-section of the dam using the results of instrument measurements and back analysis.These evaluations will be completed in the case that back analysis is carried out in order to control the degree of the accuracy and the level of confidence of the measured behavior since each of the measurements could be controlled by comparing it to the result obtained from the numerical model.Following that,by comparing the results of the numerical analysis with the measured values,it is indicated that there is a proper consistency between these two values.Moreover,it was observed that the dam performance was suitable regarding the induced pore water pressure,the pore water pressure ratio r;,settlement,induced stresses,arching degree,and hydraulic fracturing probability during the construction and initial impounding periods.The results demonstrated that the maximum settlement of the core was 238 cm at the end of construction.In the following 6 years after construction(initial impounding and exploitation period),the accumulative settlement of the dam was 270 cm.It is clear that 88% of the total settlement of the dam took place during dam construction.The reason is that the clay core was smashed in the wet side,i.e.the optimum moisture content.Whereas the average curving ratio was 0.64 during dam construction; at the end of the initial impounding,the maximum amount of curving ratio in the upstream was 0.81,and the minimum(critical) amount in the downstream was 0.52.It was also concluded that this dam is safe in comparison with the behaviors of other similar dams in the world.展开更多
The Three Gorges Dam,known as one of the biggest project items throughout the history,is a milestone for the development of China.Since it was completed in 2006,the dam has been persistently supplying ample electricit...The Three Gorges Dam,known as one of the biggest project items throughout the history,is a milestone for the development of China.Since it was completed in 2006,the dam has been persistently supplying ample electricity to the southern and eastern part of China.Despite its impressive output and benefits notwithstanding,we have to objectively pay our attention to the long-term impact that the Three Gorges Dam leaves to the place where we live,especially the influence on the climate,the ecosystem and the migration pattern of the reservoir area.展开更多
文摘The earth-rockfill dam is one of the primary dam types in the selection of high dams to be constructed in Western China, since it is characterized by favorable adaptability of the dam foundation; full utilization of local earth, rock, and building-excavated materials; low construction cost; and low cement consumption. Many major technical issues regarding earth-rockfill dams with a height of over 250 m were studied and solved successfully in the construction of the 261.5 m Nuozhadu earth core rockfill dam. This paper describes research achievements and basic conclusions; systematically summarizes the accumulated experiences from the construction of the Nuozhadu Dam and other high earth-rockfill dams; and discusses major technical issues, such as deformation control, seepage control, dam slope stability, safety and control of flood discharging, safety and quality control of dam construction, safety assessments, early warning, and other key technical difficulties. This study also provides a reference and technological support for the future construction of 300 m high earth-rockfill dams.
文摘In the present study a Genetic Programing model (GP) proposed for the prediction of relative crest settlement of concrete faced rock fill dams. To this end information of 30 large dams constructed in seven countries across the world is gathered with their reported settlements. The results showed that the GP model is able to estimate the dam settlement properly based on four properties, void ratio of dam’s body (e), height (H), vertical deformation modulus (Ev) and shape factor (Sc) of the dam. For verification of the model applicability, obtained results compared with other research methods such as Clements’s formula and the finite element model. The comparison showed that in all cases the GP model led to be more accurate than those of performed in literature. Also a proper compatibility between the GP model and the finite element model was perceived.
文摘Careful monitoring in the earth dams, to measure deformation caused by settlement and movement has always been a concern for engineers in the field. In order to measure settlement and deformation of earth dams, usually the precision instruments of settlement set and combined Inclinometer that is commonly referred to IS instrument, will be used. In some dams, because the thickness of alluvium is high and there is no possibility of alluvium removal (technically and economically and in terms of performance), there is no possibility to place the end of IS instrument (precision instruments of Inclinometer-settlement set) in the rock foundation. Inevitably, have to accept installing pipes in the weak and the deformable alluvial foundation that this leads to errors in the calculation of the actual settlement (absolute settlement) in different parts of the dam body. The purpose of this paper is to present new and refine criteria for predicting settlement and deformation in earth dams. The study is based on conditions in three dams with a deformation quite alluvial (Agh Chai, Narmashir and Gilan-e Gharb) to provide settlement criteria affected by alluvial foundation. To achieve this goal, the settlement of dams was simulated by using finite difference method with FLAC3D software and then the modeling results were compared with reading IS instrument. In the end, the caliber of the model and validate the results, by using regression analysis techniques and scrutinized modeling parameters with real situations and then by using MATLAB software and Curve Fitting Toolbox, a new criteria for the settlement based on elasticity modulus, cohesion, friction angle, density of earth dam and alluvial foundation was obtained. The results of these studies show that, by using the new criteria measures, the amount of settlement and deformation for the dams with alluvial foundation can be corrected after instrument readings and the error rate in reading IS instrument can be greatly reduced.
基金Foundation item: Project(IRTl125) supported by the Program for Changjiang Scholars and Innovative Research Team in Universities of China Project(B13024) supported by the "111" Project Project(BK2012811) supported by the Natural Science Foundation of Jiangsu Province, China
文摘Many high earth-rockfill dams are constructed in the west of China. The seismic intensity at the dam site is usually very high, thus it is of great importance to ensure the safety of the dam in meizoseismal area. A 3D FEM model is established to analyze the seismic responses of Shiziping earth-rockfill dam. The nonlinear elastic Duncan-Chang constitutive model and the equivalent viscoelastic constitutive model are used to simulate the static and dynamic stress strain relationships of the dam materials, respectively. Four groups of seismic waves are inputted from the top of the bedrock to analyze the dynamic responses of the dam. The numerical results show that the calculated dynamic magnification factors display a good consistency with the specification values. The site spectrum results in larger acceleration response than the specification spectrum. The analysis of relative dynamic displacement indicates that the displacement at the downstream side of the dam is larger than that at the upstream side. The displacement response reduces from the center of river valley to two banks. The displacement responses corresponding to the specification spectrum are a little smaller than those corresponding to the site spectrum. The analysis of shear stress indicates that a large shear stress area appears in the upstream overburden layer, where the shear stress caused by site waves is larger than that caused by specification waves. The analysis of dynamic principal stress indicates that the minimum dynamic stresses in corridor caused by specification and site waves have little difference. The maximum and minimum dynamic stresses are relatively large at two sides. The largest tensile stress occurs at two sides of the floor of grouting corridor, which may result in the crack near the corridor side. The numerical results present good consistency with the observation data of the grouting corridor in Wenchuan earthquake.
基金supported by the National Natural Science Foundation of China(Grant No.51979224)the China National Funds for Distinguished Young Scientists(Grant No.52125904).
文摘The unique structure and complex deformation characteristics of concrete face rockfill dams(CFRDs)create safety monitoring challenges.This study developed an improved random forest(IRF)model for dam health monitoring modeling by replacing the decision tree in the random forest(RF)model with a novel M5'model tree algorithm.The factors affecting dam deformation were preliminarily selected using the statistical model,and the grey relational degree theory was utilized to reduce the dimensions of model input variables.Finally,a deformation prediction model of CFRDs was established using the IRF model.The ten-fold cross-validation method was used to quantitatively analyze the parameters affecting the IRF algorithm.The performance of the established model was verified using data from three specific measurement points on the Jishixia dam and compared with other dam deformation prediction models.At point ES-10,the performance evaluation indices of the IRF model were superior to those of the M5'model tree and RF models and the classical support vector regression(SVR)and back propagation(BP)neural network models,indicating the satisfactory performance of the IRF model.The IRF model also outperformed the SVR and BP models in settlement prediction at points ES2-8 and ES4-10,demonstrating its strong anti-interference and generalization capabilities.This study has developed a novel method for forecasting and analyzing dam settlements with practical significance.Moreover,the established IRF model can also provide guidance for modeling health monitoring of other structures.
文摘In this study,the behavior of Gavoshan dam was evaluated during construction and the first impounding.A two-dimensional(2D) numerical analysis was conducted based on a finite difference method on the largest cross-section of the dam using the results of instrument measurements and back analysis.These evaluations will be completed in the case that back analysis is carried out in order to control the degree of the accuracy and the level of confidence of the measured behavior since each of the measurements could be controlled by comparing it to the result obtained from the numerical model.Following that,by comparing the results of the numerical analysis with the measured values,it is indicated that there is a proper consistency between these two values.Moreover,it was observed that the dam performance was suitable regarding the induced pore water pressure,the pore water pressure ratio r;,settlement,induced stresses,arching degree,and hydraulic fracturing probability during the construction and initial impounding periods.The results demonstrated that the maximum settlement of the core was 238 cm at the end of construction.In the following 6 years after construction(initial impounding and exploitation period),the accumulative settlement of the dam was 270 cm.It is clear that 88% of the total settlement of the dam took place during dam construction.The reason is that the clay core was smashed in the wet side,i.e.the optimum moisture content.Whereas the average curving ratio was 0.64 during dam construction; at the end of the initial impounding,the maximum amount of curving ratio in the upstream was 0.81,and the minimum(critical) amount in the downstream was 0.52.It was also concluded that this dam is safe in comparison with the behaviors of other similar dams in the world.
文摘The Three Gorges Dam,known as one of the biggest project items throughout the history,is a milestone for the development of China.Since it was completed in 2006,the dam has been persistently supplying ample electricity to the southern and eastern part of China.Despite its impressive output and benefits notwithstanding,we have to objectively pay our attention to the long-term impact that the Three Gorges Dam leaves to the place where we live,especially the influence on the climate,the ecosystem and the migration pattern of the reservoir area.