There are several methods for analyzing the acceleration of an earthquake.In this research,a discrete wavelet theory based on the Mallat method was employed to analyze the acceleration of earthquake records.For this p...There are several methods for analyzing the acceleration of an earthquake.In this research,a discrete wavelet theory based on the Mallat method was employed to analyze the acceleration of earthquake records.For this purpose,first,the acceleration of the main earthquake was determined using the method of banding,filtering and correction of a filtered wave.Then,the acceleration of the earthquake up to five stages was decomposed using discrete wavelet theory.In this method,in which the Down-Sampling rule is utilized in each step,the number of earthquake record points is half past.Each of the waveforms was based on the acceleration of the maximum original earthquake,and the maximum acceleration in all the waves was identical.For each of the five waves obtained from wavelet decomposition,the velocity curve and ground acceleration are obtained and compared with each other.Finally,a structure was analyzed using the main wave of the earthquake and each of the waveforms was analyzed in five stages and their dynamic response curves were compared.The results showed that until the third stage of the wavelet decomposition,the error was insignificant and the dynamic response to the magnitude of the earthquake was small.The analysis time is about 10% of the analysis time with the main wave,and the error is less than 6%.展开更多
Long-term seismic activity prior to the December 26, 2004, off the west coast of northern Sumatra, Indonesia, MW=9.0 earthquake was investigated using the Harvard CMT catalogue. It is observed that before this great e...Long-term seismic activity prior to the December 26, 2004, off the west coast of northern Sumatra, Indonesia, MW=9.0 earthquake was investigated using the Harvard CMT catalogue. It is observed that before this great earth-quake, there exists an accelerating moment release (AMR) process with the temporal scale of a quarter century and the spatial scale of 1 500 km. Within this spatial range, the MW=9.0 event falls into the piece-wise power-law-like frequency-magnitude distribution. Therefore, in the perspective of the critical-point-like model of earthquake preparation, the failure to forecast/predict the approaching and/or the size of this earthquake is not due to the physically intrinsic unpredictability of earthquakes.展开更多
文摘There are several methods for analyzing the acceleration of an earthquake.In this research,a discrete wavelet theory based on the Mallat method was employed to analyze the acceleration of earthquake records.For this purpose,first,the acceleration of the main earthquake was determined using the method of banding,filtering and correction of a filtered wave.Then,the acceleration of the earthquake up to five stages was decomposed using discrete wavelet theory.In this method,in which the Down-Sampling rule is utilized in each step,the number of earthquake record points is half past.Each of the waveforms was based on the acceleration of the maximum original earthquake,and the maximum acceleration in all the waves was identical.For each of the five waves obtained from wavelet decomposition,the velocity curve and ground acceleration are obtained and compared with each other.Finally,a structure was analyzed using the main wave of the earthquake and each of the waveforms was analyzed in five stages and their dynamic response curves were compared.The results showed that until the third stage of the wavelet decomposition,the error was insignificant and the dynamic response to the magnitude of the earthquake was small.The analysis time is about 10% of the analysis time with the main wave,and the error is less than 6%.
基金Ministry of Science and Technology Project (2004CB418406).
文摘Long-term seismic activity prior to the December 26, 2004, off the west coast of northern Sumatra, Indonesia, MW=9.0 earthquake was investigated using the Harvard CMT catalogue. It is observed that before this great earth-quake, there exists an accelerating moment release (AMR) process with the temporal scale of a quarter century and the spatial scale of 1 500 km. Within this spatial range, the MW=9.0 event falls into the piece-wise power-law-like frequency-magnitude distribution. Therefore, in the perspective of the critical-point-like model of earthquake preparation, the failure to forecast/predict the approaching and/or the size of this earthquake is not due to the physically intrinsic unpredictability of earthquakes.