Geophysical inversion for earthquake dislocation source model from the observed crustal deformation field is a nonlinear multimodal problem. Although a lot of nonlinear algorithms have been developed, scientists are p...Geophysical inversion for earthquake dislocation source model from the observed crustal deformation field is a nonlinear multimodal problem. Although a lot of nonlinear algorithms have been developed, scientists are pursuing a rapid and accurate method to achieve more stable inversion solutions. Differential evolution, an improved Genetic Evolution algorithm, is implemented to solve the problem. The algorithm is fulfilled by Python 2.7 and tested for the 2004 Mw6.0 Parkfield earthquake, the 2009 Mw6.3 L' aquila earthquake, and a virtual MwT.3 earthquake. The inversion results demonstrate that the differential evolution algorithm is not only simple and straightforward to implement, but also robust with impressive precision even if all the 9 model parameters are loosely constrained.展开更多
The Second Crustal Deformation Monitoring Center, China Seismological Bureau, has detected a marked uplift associated with the Gonghe Ms=7.0 earthquake on April 26, 1990, Qinghai Province. From the observed vertical d...The Second Crustal Deformation Monitoring Center, China Seismological Bureau, has detected a marked uplift associated with the Gonghe Ms=7.0 earthquake on April 26, 1990, Qinghai Province. From the observed vertical deformations and using a rectangular uniform slip model in a homogeneous elastic half space, we first employ genetic algorithms (GA) to infer the approximate global optimal solution, and further use least squares method to get more accurate global optimal solution by taking the approximate solution of GA as the initial parameters of least squares. The inversion results show that the causative fault of Gonghe Ms=7.0 earthquake is a right-lateral reverse fault with strike NW60°, dip SW and dip angle 37°, the coseismic fracture length, width and slip are 37 km, 6 km and 2.7 m respectively. Combination of GA and least squares algorithms is an effective joint inversion method, which could not only escape from local optimum of least squares, but also solve the slow convergence problem of GA after reaching adjacency of global optimal solution.展开更多
Based on P- and S-wave amplitudes and some clear initial P-wave motion data, we calculated focal mechanism solutions of 928 M≥2.5 earthquakes (1994-2005) in four sub-blocks of Sichuan and Yunnan Provinces, namely S...Based on P- and S-wave amplitudes and some clear initial P-wave motion data, we calculated focal mechanism solutions of 928 M≥2.5 earthquakes (1994-2005) in four sub-blocks of Sichuan and Yunnan Provinces, namely Sichuan-Qinghai, Yajiang, Central Sichuan and Central Yunnan blocks. Combining these calculation results with those of the focal mechanism solutions of moderately strong earthquakes, we analyzed the stress field characteristics and dislocation types of seismogenic faults that are distributed in the four sub-blocks. The orientation of principal compressive stress for each block is: EW in Sichuan-Qinghai, ESE or SE in Yajiang, Central Sichuan and Central Yunnan blocks. Based on a great deal of focal mechanism data, we designed a program and calculated the directions of the principal stress tensors, σ1, σ2 and σ3, for the four blocks. Meanwhile, we estimated the difference (also referred to as consistency parameter θ^- ) between the force axis direction of focal mechanism solution and the direction of the mean stress tensor of each block. Then we further analyzed the variation of θ^- versus time and the dislocation types of seismogenic faults. Through determination of focal mechanism solutions for each block, we present information on the variation in θ^- value and dislocation types of seismogenic faults.展开更多
This paper reviews the recent advances in computing coseismic deformations,and their contributions to seismology and geodesy. At first,an overview on the history of the dislocation theory development is given in the i...This paper reviews the recent advances in computing coseismic deformations,and their contributions to seismology and geodesy. At first,an overview on the history of the dislocation theory development is given in the introduction section. Then,emphasis are given on some new developments through few examples in the following sections,such as the new dislocation theory for a 3D Earth model,a new computing scheme on coseismic deflection change of vertical,the relation of dislocation Love number and the conventional Love numbers,the application of dislocation theory applied in satellite gravity observations,the coseismic deformations observed by GRACE,and a new method to determine dislocation Love numbers by GRACE. Furthermore,some advanced theoretical and cases studies are introduced to illustrate how dislocation theory is important in interpret geodetic data,or invert seismic slip for co- and post-seismic processes,using seismic and geodetic data. Final remarks are given in the last section,with discussions,conclusions,comments on existing problems,and expected methods to solve them.展开更多
基金supported by Institute of Seismology Foundation(201156068)the National Natural Science Foundation of China(41274027)
文摘Geophysical inversion for earthquake dislocation source model from the observed crustal deformation field is a nonlinear multimodal problem. Although a lot of nonlinear algorithms have been developed, scientists are pursuing a rapid and accurate method to achieve more stable inversion solutions. Differential evolution, an improved Genetic Evolution algorithm, is implemented to solve the problem. The algorithm is fulfilled by Python 2.7 and tested for the 2004 Mw6.0 Parkfield earthquake, the 2009 Mw6.3 L' aquila earthquake, and a virtual MwT.3 earthquake. The inversion results demonstrate that the differential evolution algorithm is not only simple and straightforward to implement, but also robust with impressive precision even if all the 9 model parameters are loosely constrained.
文摘The Second Crustal Deformation Monitoring Center, China Seismological Bureau, has detected a marked uplift associated with the Gonghe Ms=7.0 earthquake on April 26, 1990, Qinghai Province. From the observed vertical deformations and using a rectangular uniform slip model in a homogeneous elastic half space, we first employ genetic algorithms (GA) to infer the approximate global optimal solution, and further use least squares method to get more accurate global optimal solution by taking the approximate solution of GA as the initial parameters of least squares. The inversion results show that the causative fault of Gonghe Ms=7.0 earthquake is a right-lateral reverse fault with strike NW60°, dip SW and dip angle 37°, the coseismic fracture length, width and slip are 37 km, 6 km and 2.7 m respectively. Combination of GA and least squares algorithms is an effective joint inversion method, which could not only escape from local optimum of least squares, but also solve the slow convergence problem of GA after reaching adjacency of global optimal solution.
基金National Key Basic Research Development and Programming Project (2004CB418404) and Joint Seismological Science Foundation (105004).
文摘Based on P- and S-wave amplitudes and some clear initial P-wave motion data, we calculated focal mechanism solutions of 928 M≥2.5 earthquakes (1994-2005) in four sub-blocks of Sichuan and Yunnan Provinces, namely Sichuan-Qinghai, Yajiang, Central Sichuan and Central Yunnan blocks. Combining these calculation results with those of the focal mechanism solutions of moderately strong earthquakes, we analyzed the stress field characteristics and dislocation types of seismogenic faults that are distributed in the four sub-blocks. The orientation of principal compressive stress for each block is: EW in Sichuan-Qinghai, ESE or SE in Yajiang, Central Sichuan and Central Yunnan blocks. Based on a great deal of focal mechanism data, we designed a program and calculated the directions of the principal stress tensors, σ1, σ2 and σ3, for the four blocks. Meanwhile, we estimated the difference (also referred to as consistency parameter θ^- ) between the force axis direction of focal mechanism solution and the direction of the mean stress tensor of each block. Then we further analyzed the variation of θ^- versus time and the dislocation types of seismogenic faults. Through determination of focal mechanism solutions for each block, we present information on the variation in θ^- value and dislocation types of seismogenic faults.
基金financially supported by the CAS/CAFEA international partnership Program for creative research teams (No. KZZD-EW-TZ-19)the National Nature Science Foundation of China (No. 41331066 and 41174063)
文摘This paper reviews the recent advances in computing coseismic deformations,and their contributions to seismology and geodesy. At first,an overview on the history of the dislocation theory development is given in the introduction section. Then,emphasis are given on some new developments through few examples in the following sections,such as the new dislocation theory for a 3D Earth model,a new computing scheme on coseismic deflection change of vertical,the relation of dislocation Love number and the conventional Love numbers,the application of dislocation theory applied in satellite gravity observations,the coseismic deformations observed by GRACE,and a new method to determine dislocation Love numbers by GRACE. Furthermore,some advanced theoretical and cases studies are introduced to illustrate how dislocation theory is important in interpret geodetic data,or invert seismic slip for co- and post-seismic processes,using seismic and geodetic data. Final remarks are given in the last section,with discussions,conclusions,comments on existing problems,and expected methods to solve them.